On solutions of the two-point boundary problem for one non-autonomous differential system with a quadratic at phase variables right-hand side
Problemy fiziki, matematiki i tehniki, no. 1 (2014), pp. 39-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we consider the system $\dot{x}=ax+by+a_{20}x^2+a_{11}xy+a_{02}y^2$, $\dot{y}=-bx+ay+b_{20}x^2+b_{11}xy+b_{02}y^2$, where $a_{ij}=a_{ij}(t)$, $b_{ij}=b_{ij}(t)$ are the continued functions; $a$ and $b$ are the constants. For this system we established conditions under which this system has a linear Mironenko reflecting function and therefore a linear mapping in period $[-\omega; \omega]$. The obtained conditions allow us point out the initial data of the solutions of the two-point boundary task $\Phi(x(\omega), y(\omega), x(-\omega), y(-\omega))=0$ and therefore, the initial data of the $2\omega$-periodic solutions of the system (1) in the case when its coefficients are $2\omega$ periodic continued functions.
Keywords: reflective function Mironenko, in-period transformation, boundary problem, periodic solutions.
@article{PFMT_2014_1_a6,
     author = {E. V. Varenikova},
     title = {On solutions of the two-point boundary problem for one non-autonomous differential system with a quadratic at phase variables right-hand side},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {39--42},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_1_a6/}
}
TY  - JOUR
AU  - E. V. Varenikova
TI  - On solutions of the two-point boundary problem for one non-autonomous differential system with a quadratic at phase variables right-hand side
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 39
EP  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_1_a6/
LA  - ru
ID  - PFMT_2014_1_a6
ER  - 
%0 Journal Article
%A E. V. Varenikova
%T On solutions of the two-point boundary problem for one non-autonomous differential system with a quadratic at phase variables right-hand side
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 39-42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_1_a6/
%G ru
%F PFMT_2014_1_a6
E. V. Varenikova. On solutions of the two-point boundary problem for one non-autonomous differential system with a quadratic at phase variables right-hand side. Problemy fiziki, matematiki i tehniki, no. 1 (2014), pp. 39-42. http://geodesic.mathdoc.fr/item/PFMT_2014_1_a6/

[1] V. I. Mironenko, Otrazhayuschaya funktsiya i periodicheskie resheniya differentsialnykh uravnenii, Izd-vo «Universitetskoe», Minsk, 1986, 76 pp. | MR | Zbl

[2] V. I. Mironenko, Otrazhayuschaya funktsiya i issledovanie mnogomernykh differentsialnykh sistem, UO «GGU im. F. Skoriny», Gomel, 2004, 196 pp. | MR

[3] E. V. Musafirov, “Differential systems, the mapping over period for which is represented by a product of three exponential matrixes”, Journal of Mathematical Analysis and Applications, 329 (2007), 647–654 | DOI | MR | Zbl

[4] E. V. Musafirov, “Reflecting function and periodic solutions of differential systems with small parameter”, Indian Journal of Mathematics, 50:1 (2008), 63–76 | MR | Zbl

[5] Zhengxin Zhou, “On the Poincare mapping and periodic solutions of nonautonomous differential systems”, Commun. Pure Appl. Anal., 6:2 (2007), 541–547 | DOI | MR | Zbl

[6] Shanlin Zhang, Zhengxin Zhou, “On the equivalence of the Abel equation”, Ann. Differ. Equations, 22:3 (2006), 461–466 | MR | Zbl

[7] Zhengxin Zhou, “Stability of differential systems”, Appl. Math., Ser. B, 21:3 (2006), 327–334 | DOI | MR | Zbl

[8] Zhengxin Zhou, “On the reflective function of polynomial differential system”, J. Math. Anal. Appl., 278:1 (2003), 18–26 | DOI | MR | Zbl

[9] Zhengxin Zhou, Yuexin Yan, “The nonlinear reflective function of differential system”, Nonlinear Anal., Theory Methods Appl., 53:6(A) (2003), 733–741 | DOI | MR | Zbl

[10] V. I. Mironenko, V. V. Mironenko, “Vozmuscheniya sistem, ne izmenyayuschie vremennykh simmetrii i otobrazheniya Puankare”, Differents. uravneniya, 44:10 (2008), 1347–1352 | MR | Zbl

[11] V. I. Mironenko, V. V. Mironenko, “How to construct equivalent differential systems”, Applied Mathematic Letters, 22 (2009), 1356–1359 | DOI | MR | Zbl

[12] E. V. Varenikova, “Otrazhayuschaya funktsiya i resheniya dvukhtochechnykh kraevykh zadach dlya neavtonomnykh dvumernykh differentsialnykh sistem”, Differents. uravneniya, 48:1 (2012), 143–147 | MR | Zbl