On solutions of the two-point boundary problem for one non-autonomous differential system with a quadratic at phase variables right-hand side
Problemy fiziki, matematiki i tehniki, no. 1 (2014), pp. 39-42

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we consider the system $\dot{x}=ax+by+a_{20}x^2+a_{11}xy+a_{02}y^2$, $\dot{y}=-bx+ay+b_{20}x^2+b_{11}xy+b_{02}y^2$, where $a_{ij}=a_{ij}(t)$, $b_{ij}=b_{ij}(t)$ are the continued functions; $a$ and $b$ are the constants. For this system we established conditions under which this system has a linear Mironenko reflecting function and therefore a linear mapping in period $[-\omega; \omega]$. The obtained conditions allow us point out the initial data of the solutions of the two-point boundary task $\Phi(x(\omega), y(\omega), x(-\omega), y(-\omega))=0$ and therefore, the initial data of the $2\omega$-periodic solutions of the system (1) in the case when its coefficients are $2\omega$ periodic continued functions.
Keywords: reflective function Mironenko, in-period transformation, boundary problem, periodic solutions.
@article{PFMT_2014_1_a6,
     author = {E. V. Varenikova},
     title = {On solutions of the two-point boundary problem for one non-autonomous differential system with a quadratic at phase variables right-hand side},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {39--42},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_1_a6/}
}
TY  - JOUR
AU  - E. V. Varenikova
TI  - On solutions of the two-point boundary problem for one non-autonomous differential system with a quadratic at phase variables right-hand side
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 39
EP  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_1_a6/
LA  - ru
ID  - PFMT_2014_1_a6
ER  - 
%0 Journal Article
%A E. V. Varenikova
%T On solutions of the two-point boundary problem for one non-autonomous differential system with a quadratic at phase variables right-hand side
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 39-42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_1_a6/
%G ru
%F PFMT_2014_1_a6
E. V. Varenikova. On solutions of the two-point boundary problem for one non-autonomous differential system with a quadratic at phase variables right-hand side. Problemy fiziki, matematiki i tehniki, no. 1 (2014), pp. 39-42. http://geodesic.mathdoc.fr/item/PFMT_2014_1_a6/