Associated fundamental matrices, Cauchy functions and wronskians of linear differential equations of the second order with generalized coefficients in the algebra of mnemofunctions
Problemy fiziki, matematiki i tehniki, no. 1 (2014), pp. 31-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper Cauchy problems for a homogeneous and nonhomogeneous linear differential equations with generalized coefficients in algebra mnemofunctions are investigated. Associated Cauchy functions and associated Wronskians are introduced and studied. Expressions for the Cauchy functions and for the fundamental matrices are found by the fundamental system of solutions. Representations associated solutions of the Cauchy problem are given by means of Cauchy functions.
Keywords: linear differential equation of the second order, algebra mnemofunctions, associated solutions, associated fundamental matrices, fundamental systems of solutions, associated Cauchy functions, associated Wronskians.
@article{PFMT_2014_1_a5,
     author = {T. S. Autushka},
     title = {Associated fundamental matrices, {Cauchy} functions and wronskians of linear differential equations of the second order with generalized coefficients in the algebra of mnemofunctions},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {31--38},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_1_a5/}
}
TY  - JOUR
AU  - T. S. Autushka
TI  - Associated fundamental matrices, Cauchy functions and wronskians of linear differential equations of the second order with generalized coefficients in the algebra of mnemofunctions
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 31
EP  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_1_a5/
LA  - ru
ID  - PFMT_2014_1_a5
ER  - 
%0 Journal Article
%A T. S. Autushka
%T Associated fundamental matrices, Cauchy functions and wronskians of linear differential equations of the second order with generalized coefficients in the algebra of mnemofunctions
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 31-38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_1_a5/
%G ru
%F PFMT_2014_1_a5
T. S. Autushka. Associated fundamental matrices, Cauchy functions and wronskians of linear differential equations of the second order with generalized coefficients in the algebra of mnemofunctions. Problemy fiziki, matematiki i tehniki, no. 1 (2014), pp. 31-38. http://geodesic.mathdoc.fr/item/PFMT_2014_1_a5/

[1] J. Ligeza, “On generalized solutions of some differential nonlinear equations of order $n$”, Ann. Pol. Math., 31:2 (1975), 115–120 | MR | Zbl

[2] S. T. Zavalischin, A. N. Sesekin, Impulsnye protsessy: modeli i prilozheniya, Nauka, M., 1991, 256 pp. | MR

[3] S. G. Pandit, S. G. Deo, Differential systems involving impulses, Lect. Notes Math., Springer-Verlag, Berlin, 1982, 102 pp. | MR | Zbl

[4] R. M. Tatsii i insh., Uzagalneni kvazidiferentsialni rivnyannya, Kolo, Drogobich, 2011, 301 pp.

[5] A. B. Antonevich, Ya. V. Radyno, “Ob obschem metode postroeniya algebr obobschennykh funktsii”, Doklady AN SSSR, 318:2 (1991), 267–270 | MR | Zbl

[6] N. V. Lazakovich, O. L. Yablonskii, A. K. Khmyzov, “Zadacha Koshi dlya sistem differentsialnykh uravnenii s obobschennymi koeffitsientami v pryamom proizvedenii algebr mnemofunktsii”, Doklady NAN RB, 55:2 (2011), 5–9 | MR | Zbl

[7] N. V. Bedziuk, A. L. Yablonski, “Solutions of nonlinear differential equations”, Nonlinear Differential Equations and Applications, 17:2 (2010), 249–270 | DOI | MR | Zbl

[8] T. S. Avtushko, “Assotsiirovannye vronskiany lineinogo differentsialnogo uravneniya vtorogo poryadka s obobschennymi koeffitsientami v algebre mnemofunktsii”, Vestsi BDPU. Seriya 3, 2013, no. 2, 21–25

[9] B. M. Miller, E. Ya. Rubinovich, Optimizatsiya dinamicheskikh sistem s impulsnymi upravleniyami, monografiya, Nauka, M., 2005, 429 pp.

[10] T. S. Avtushko, A. Yu. Rusetskii, “Zadacha Koshi dlya lineinogo differentsialnogo uravneniya vtorogo poryadka s obobschennymi koeffitsientami”, XI Belorusskaya matematicheskaya konferentsiya, Tezisy dokladov Mezhdunar. nauch. konf. (Minsk, 4–9 noyabrya 2012 g.), v. 1, Institut matematiki NAN Belarusi, Minsk, 2012, 30–31

[11] A. B. Antonevich, Ya. V. Radyno, Funktsionalnyi analiz i integralnye uravneniya, uchebnik, 2-e izdanie, BGU, Minsk, 2006, 430 pp.

[12] T. S. Avtushko, “Predstavlenie vronskiana lineinogo differentsialnogo uravneniya vtorogo poryadka s obobschennymi koeffitsientami v algebre mnemofunktsii”, XV Mezhdunarodnaya nauchnaya konferentsiya po differentsialnym uravneniyam, Eruginskie chteniya-2013, Tezisy dokladov (Grodno, 15–17 maya 2013 g.), v. 2, 29