Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2014_1_a5, author = {T. S. Autushka}, title = {Associated fundamental matrices, {Cauchy} functions and wronskians of linear differential equations of the second order with generalized coefficients in the algebra of mnemofunctions}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {31--38}, publisher = {mathdoc}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2014_1_a5/} }
TY - JOUR AU - T. S. Autushka TI - Associated fundamental matrices, Cauchy functions and wronskians of linear differential equations of the second order with generalized coefficients in the algebra of mnemofunctions JO - Problemy fiziki, matematiki i tehniki PY - 2014 SP - 31 EP - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2014_1_a5/ LA - ru ID - PFMT_2014_1_a5 ER -
%0 Journal Article %A T. S. Autushka %T Associated fundamental matrices, Cauchy functions and wronskians of linear differential equations of the second order with generalized coefficients in the algebra of mnemofunctions %J Problemy fiziki, matematiki i tehniki %D 2014 %P 31-38 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2014_1_a5/ %G ru %F PFMT_2014_1_a5
T. S. Autushka. Associated fundamental matrices, Cauchy functions and wronskians of linear differential equations of the second order with generalized coefficients in the algebra of mnemofunctions. Problemy fiziki, matematiki i tehniki, no. 1 (2014), pp. 31-38. http://geodesic.mathdoc.fr/item/PFMT_2014_1_a5/
[1] J. Ligeza, “On generalized solutions of some differential nonlinear equations of order $n$”, Ann. Pol. Math., 31:2 (1975), 115–120 | MR | Zbl
[2] S. T. Zavalischin, A. N. Sesekin, Impulsnye protsessy: modeli i prilozheniya, Nauka, M., 1991, 256 pp. | MR
[3] S. G. Pandit, S. G. Deo, Differential systems involving impulses, Lect. Notes Math., Springer-Verlag, Berlin, 1982, 102 pp. | MR | Zbl
[4] R. M. Tatsii i insh., Uzagalneni kvazidiferentsialni rivnyannya, Kolo, Drogobich, 2011, 301 pp.
[5] A. B. Antonevich, Ya. V. Radyno, “Ob obschem metode postroeniya algebr obobschennykh funktsii”, Doklady AN SSSR, 318:2 (1991), 267–270 | MR | Zbl
[6] N. V. Lazakovich, O. L. Yablonskii, A. K. Khmyzov, “Zadacha Koshi dlya sistem differentsialnykh uravnenii s obobschennymi koeffitsientami v pryamom proizvedenii algebr mnemofunktsii”, Doklady NAN RB, 55:2 (2011), 5–9 | MR | Zbl
[7] N. V. Bedziuk, A. L. Yablonski, “Solutions of nonlinear differential equations”, Nonlinear Differential Equations and Applications, 17:2 (2010), 249–270 | DOI | MR | Zbl
[8] T. S. Avtushko, “Assotsiirovannye vronskiany lineinogo differentsialnogo uravneniya vtorogo poryadka s obobschennymi koeffitsientami v algebre mnemofunktsii”, Vestsi BDPU. Seriya 3, 2013, no. 2, 21–25
[9] B. M. Miller, E. Ya. Rubinovich, Optimizatsiya dinamicheskikh sistem s impulsnymi upravleniyami, monografiya, Nauka, M., 2005, 429 pp.
[10] T. S. Avtushko, A. Yu. Rusetskii, “Zadacha Koshi dlya lineinogo differentsialnogo uravneniya vtorogo poryadka s obobschennymi koeffitsientami”, XI Belorusskaya matematicheskaya konferentsiya, Tezisy dokladov Mezhdunar. nauch. konf. (Minsk, 4–9 noyabrya 2012 g.), v. 1, Institut matematiki NAN Belarusi, Minsk, 2012, 30–31
[11] A. B. Antonevich, Ya. V. Radyno, Funktsionalnyi analiz i integralnye uravneniya, uchebnik, 2-e izdanie, BGU, Minsk, 2006, 430 pp.
[12] T. S. Avtushko, “Predstavlenie vronskiana lineinogo differentsialnogo uravneniya vtorogo poryadka s obobschennymi koeffitsientami v algebre mnemofunktsii”, XV Mezhdunarodnaya nauchnaya konferentsiya po differentsialnym uravneniyam, Eruginskie chteniya-2013, Tezisy dokladov (Grodno, 15–17 maya 2013 g.), v. 2, 29