On solutions of simplified systems of nonlinear differential equations related to the problem of four bodies
Problemy fiziki, matematiki i tehniki, no. 1 (2014), pp. 69-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the main part we consider a system describing the motion of four bodies under the action of gravity. Using the set of elementary algebraic transformations, a simplified system consisting of nonlinear differential equations, each of which has the second order was developed. 21 autonomous nonlinear differential equation of the first order with respect to one of the components of the system, whose general solution has the Painlevé property were obtained. Necessary and sufficient conditions for Painlevé properties in the studied system were established.
Keywords: movement of four bodies, constant interaction Painlevé property, meromorphic solution.
@article{PFMT_2014_1_a11,
     author = {A. T. Sazonova},
     title = {On solutions of simplified systems of nonlinear differential equations related to the problem of four bodies},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {69--73},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_1_a11/}
}
TY  - JOUR
AU  - A. T. Sazonova
TI  - On solutions of simplified systems of nonlinear differential equations related to the problem of four bodies
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 69
EP  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_1_a11/
LA  - ru
ID  - PFMT_2014_1_a11
ER  - 
%0 Journal Article
%A A. T. Sazonova
%T On solutions of simplified systems of nonlinear differential equations related to the problem of four bodies
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 69-73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_1_a11/
%G ru
%F PFMT_2014_1_a11
A. T. Sazonova. On solutions of simplified systems of nonlinear differential equations related to the problem of four bodies. Problemy fiziki, matematiki i tehniki, no. 1 (2014), pp. 69-73. http://geodesic.mathdoc.fr/item/PFMT_2014_1_a11/

[1] F. Kalodzhero, “Razreshimaya zadacha trekh tel i gipotezy Penleve”, Teoreticheskaya i matematicheskaya fizika, 133 (2002), 149–159 | DOI | MR

[2] A. T. Lozovskaya, “Test Penleve dlya nekotorykh sistem differentsialnykh uravnenii, svyazannykh s zadachei trekh tel”, Nauka-2009, sb. st. aspirantov i magistrantov GrGU im. Ya. Kupaly, ed. A. F. Pronevich, GrGU, Grodno, 2009, 48–52