Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2013_4_a9, author = {D. I. Kirilyuk}, title = {$n${-Ary} analog of affine {Dezarg} theorem}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {59--62}, publisher = {mathdoc}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2013_4_a9/} }
D. I. Kirilyuk. $n$-Ary analog of affine Dezarg theorem. Problemy fiziki, matematiki i tehniki, no. 4 (2013), pp. 59-62. http://geodesic.mathdoc.fr/item/PFMT_2013_4_a9/
[1] W. Dornte, “Untersuchungen uber einen verallgemeinerten Gruppenbegriff”, Math. Z., 29 (1928), 1–19 | DOI | MR | Zbl
[2] E. L. Post, “Polyadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–350 | DOI | MR
[3] S. A. Rusakov, Algebraicheskie $n$-arnye sistemy: Silovskaya teoriya $n$-arnykh grupp, Belaruskaya navuka, Minsk, 1992, 264 pp.
[4] A. G. Kurosh, Obschaya algebra: lektsii 1969/70 uchebnogo goda, Nauka, M., 1974, 160 pp. | MR
[5] A. M. Galmak, $n$-Arnye gruppy, v. 1, GGU im. F. Skoriny, Gomel, 2003, 196 pp.
[6] A. M. Galmak, $n$-Arnye gruppy, v. 2, Izd. tsentr BGU, Minsk, 2007, 323 pp.
[7] S. A. Rusakov, Nekotorye prilozheniya teorii $n$-arnykh grupp, Belaruskaya navuka, Minsk, 1998, 182 pp.
[8] Yu. I. Kulazhenko, “Geometriya parallelogrammov”, Voprosy algebry i prikladnoi matematiki, sb. nauchn. tr., ed. S. A. Rusakov, Gomel, 1995, 47–64 | MR
[9] Yu. I. Kulazhenko, “Postroenie figur affinnoi geometrii na $n$-arnoi gruppe”, Voprosy algebry i prikladnoi matematiki, sb. nauchn. tr., ed. S. A. Rusakov, Gomel, 1995, 65–82
[10] Yu. I. Kulazhenko, “Geometry of semiabelian $n$-ary groups”, Quasigroups and Related Systems, 19 (2011), 265–278 | MR | Zbl
[11] Yu. I. Kulazhenko, “Vektory i kriterii poluabelevosti $n$-arnykh grupp”, Problemy fiziki, matematiki i tekhniki, 2011, no. 1 (6), 65–68