$n$-Ary analog of affine Dezarg theorem
Problemy fiziki, matematiki i tehniki, no. 4 (2013), pp. 59-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

$n$-Аry analog of affine Dezarg theorem is determined. New method of relaxation to vector equations on $n$-ary group is received.
Keywords: semiabelian $n$-ary group, vector of $n$-ary group.
@article{PFMT_2013_4_a9,
     author = {D. I. Kirilyuk},
     title = {$n${-Ary} analog of affine {Dezarg} theorem},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {59--62},
     publisher = {mathdoc},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2013_4_a9/}
}
TY  - JOUR
AU  - D. I. Kirilyuk
TI  - $n$-Ary analog of affine Dezarg theorem
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2013
SP  - 59
EP  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2013_4_a9/
LA  - ru
ID  - PFMT_2013_4_a9
ER  - 
%0 Journal Article
%A D. I. Kirilyuk
%T $n$-Ary analog of affine Dezarg theorem
%J Problemy fiziki, matematiki i tehniki
%D 2013
%P 59-62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2013_4_a9/
%G ru
%F PFMT_2013_4_a9
D. I. Kirilyuk. $n$-Ary analog of affine Dezarg theorem. Problemy fiziki, matematiki i tehniki, no. 4 (2013), pp. 59-62. http://geodesic.mathdoc.fr/item/PFMT_2013_4_a9/

[1] W. Dornte, “Untersuchungen uber einen verallgemeinerten Gruppenbegriff”, Math. Z., 29 (1928), 1–19 | DOI | MR | Zbl

[2] E. L. Post, “Polyadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–350 | DOI | MR

[3] S. A. Rusakov, Algebraicheskie $n$-arnye sistemy: Silovskaya teoriya $n$-arnykh grupp, Belaruskaya navuka, Minsk, 1992, 264 pp.

[4] A. G. Kurosh, Obschaya algebra: lektsii 1969/70 uchebnogo goda, Nauka, M., 1974, 160 pp. | MR

[5] A. M. Galmak, $n$-Arnye gruppy, v. 1, GGU im. F. Skoriny, Gomel, 2003, 196 pp.

[6] A. M. Galmak, $n$-Arnye gruppy, v. 2, Izd. tsentr BGU, Minsk, 2007, 323 pp.

[7] S. A. Rusakov, Nekotorye prilozheniya teorii $n$-arnykh grupp, Belaruskaya navuka, Minsk, 1998, 182 pp.

[8] Yu. I. Kulazhenko, “Geometriya parallelogrammov”, Voprosy algebry i prikladnoi matematiki, sb. nauchn. tr., ed. S. A. Rusakov, Gomel, 1995, 47–64 | MR

[9] Yu. I. Kulazhenko, “Postroenie figur affinnoi geometrii na $n$-arnoi gruppe”, Voprosy algebry i prikladnoi matematiki, sb. nauchn. tr., ed. S. A. Rusakov, Gomel, 1995, 65–82

[10] Yu. I. Kulazhenko, “Geometry of semiabelian $n$-ary groups”, Quasigroups and Related Systems, 19 (2011), 265–278 | MR | Zbl

[11] Yu. I. Kulazhenko, “Vektory i kriterii poluabelevosti $n$-arnykh grupp”, Problemy fiziki, matematiki i tekhniki, 2011, no. 1 (6), 65–68