On Sylow tower of finite group with subnormal non-cyclic primary subgroups
Problemy fiziki, matematiki i tehniki, no. 4 (2013), pp. 68-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group such that every non-cyclic maximal subgroups in its Sylow subgroups are subnormal in $G$. Suppose that a Sylow 2-subgroup of $G$ is either cyclic or self-normalizing. Under these assumptions, we prove that $G$ has a Sylow tower.
Keywords: finite group, Sylow subgroup, maximal subgroup, cyclic subgroup, subnormal subgroup, normalizer.
@article{PFMT_2013_4_a11,
     author = {V. S. Monakhov and A. A. Trofimuk},
     title = {On {Sylow} tower of finite group with subnormal non-cyclic primary subgroups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {68--71},
     publisher = {mathdoc},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2013_4_a11/}
}
TY  - JOUR
AU  - V. S. Monakhov
AU  - A. A. Trofimuk
TI  - On Sylow tower of finite group with subnormal non-cyclic primary subgroups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2013
SP  - 68
EP  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2013_4_a11/
LA  - ru
ID  - PFMT_2013_4_a11
ER  - 
%0 Journal Article
%A V. S. Monakhov
%A A. A. Trofimuk
%T On Sylow tower of finite group with subnormal non-cyclic primary subgroups
%J Problemy fiziki, matematiki i tehniki
%D 2013
%P 68-71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2013_4_a11/
%G ru
%F PFMT_2013_4_a11
V. S. Monakhov; A. A. Trofimuk. On Sylow tower of finite group with subnormal non-cyclic primary subgroups. Problemy fiziki, matematiki i tehniki, no. 4 (2013), pp. 68-71. http://geodesic.mathdoc.fr/item/PFMT_2013_4_a11/

[1] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, uchebnoe posobie, Vysheishaya shkola, Minsk, 2006

[2] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[3] S. Li, J. Shi, C. Zhang, “Study on abelian subgroups and the structure of groups”, Mathematics in Practice and Theory, 2008, no. 19, 125–131 | MR | Zbl

[4] S. Zhang, “On Finite Groups in which Every Solvable Non-cyclic Proper Subgroup is either Self-normalazing or Normal”, International Journal of Algebra, 6:23 (2012), 1111–1115 | MR | Zbl

[5] Y. Berkovich, Groups of Prime Power Order, Walter de Gruyter, Berlin-New York, 2008

[6] R. Brauer, M. Suzuki, “On finite groups of even order whose 2-Sylow group is a generalized quaternion group”, Proceedings of the National Academy of Sciences, 45 (1960), 1757–1759 | DOI | MR

[7] V. S. Monakhov, A. A. Trofimuk, “O konechnykh razreshimykh gruppakh fiksirovannogo ranga”, Sibirskii matematicheskii zhurnal, 2011, no. 5, 1123–1137 | Zbl