Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2013_4_a11, author = {V. S. Monakhov and A. A. Trofimuk}, title = {On {Sylow} tower of finite group with subnormal non-cyclic primary subgroups}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {68--71}, publisher = {mathdoc}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2013_4_a11/} }
TY - JOUR AU - V. S. Monakhov AU - A. A. Trofimuk TI - On Sylow tower of finite group with subnormal non-cyclic primary subgroups JO - Problemy fiziki, matematiki i tehniki PY - 2013 SP - 68 EP - 71 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2013_4_a11/ LA - ru ID - PFMT_2013_4_a11 ER -
V. S. Monakhov; A. A. Trofimuk. On Sylow tower of finite group with subnormal non-cyclic primary subgroups. Problemy fiziki, matematiki i tehniki, no. 4 (2013), pp. 68-71. http://geodesic.mathdoc.fr/item/PFMT_2013_4_a11/
[1] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, uchebnoe posobie, Vysheishaya shkola, Minsk, 2006
[2] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin–Heidelberg–New York, 1967 | MR | Zbl
[3] S. Li, J. Shi, C. Zhang, “Study on abelian subgroups and the structure of groups”, Mathematics in Practice and Theory, 2008, no. 19, 125–131 | MR | Zbl
[4] S. Zhang, “On Finite Groups in which Every Solvable Non-cyclic Proper Subgroup is either Self-normalazing or Normal”, International Journal of Algebra, 6:23 (2012), 1111–1115 | MR | Zbl
[5] Y. Berkovich, Groups of Prime Power Order, Walter de Gruyter, Berlin-New York, 2008
[6] R. Brauer, M. Suzuki, “On finite groups of even order whose 2-Sylow group is a generalized quaternion group”, Proceedings of the National Academy of Sciences, 45 (1960), 1757–1759 | DOI | MR
[7] V. S. Monakhov, A. A. Trofimuk, “O konechnykh razreshimykh gruppakh fiksirovannogo ranga”, Sibirskii matematicheskii zhurnal, 2011, no. 5, 1123–1137 | Zbl