On solvability of an inverse value problem for hyperbolic equation of the second order
Problemy fiziki, matematiki i tehniki, no. 4 (2013), pp. 63-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work an inverse problem for the hyperbolic equation of second order with periodical boundary conditions is investigated. For this reason, first of all the initial problem reduces to the equivalent problem, for which the theorem of existence and uniqueness is proved. Then using these facts the existence and uniqueness of the classical solution of initial problem is proved.
Keywords: inverse boundary problem, hyperbolic equation, method Fourier, classic solution.
@article{PFMT_2013_4_a10,
     author = {Y. T. Mechraliyev},
     title = {On solvability of an inverse value problem for hyperbolic equation of the second order},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {63--67},
     publisher = {mathdoc},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2013_4_a10/}
}
TY  - JOUR
AU  - Y. T. Mechraliyev
TI  - On solvability of an inverse value problem for hyperbolic equation of the second order
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2013
SP  - 63
EP  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2013_4_a10/
LA  - ru
ID  - PFMT_2013_4_a10
ER  - 
%0 Journal Article
%A Y. T. Mechraliyev
%T On solvability of an inverse value problem for hyperbolic equation of the second order
%J Problemy fiziki, matematiki i tehniki
%D 2013
%P 63-67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2013_4_a10/
%G ru
%F PFMT_2013_4_a10
Y. T. Mechraliyev. On solvability of an inverse value problem for hyperbolic equation of the second order. Problemy fiziki, matematiki i tehniki, no. 4 (2013), pp. 63-67. http://geodesic.mathdoc.fr/item/PFMT_2013_4_a10/

[1] A. A. Samarskii, “O nekotorykh problemakh teorii differentsialnykh uravnenii”, Differentsialnye uravneniya, 16:11 (1980), 1925–1935 | MR

[2] J. R. Cannon, “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 5:21 (1963), 155–160 | MR

[3] N. I. Ionkin, “Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem”, Differentsialnye uravneniya, 13:2 (1977), 294–304 | MR | Zbl

[4] A. M. Nakhushev, “Ob odnom priblizhennom metode resheniya kraevykh zadach dlya differentsialnykh uravnenii i ego priblizheniya k dinamike pochvennoi vlagi i gruntovykh vod”, Differentsialnye uravneniya, 18:1 (1982), 72–81 | MR | Zbl

[5] Ya. T. Megraliev, “Obratnaya kraevaya zadacha dlya differentsialnogo uravneniya s chastnymi proizvodnymi chetvertogo poryadka s integralnym usloviem”, Vestnik YuUrGU. Seriya «Matematika. Mekhanika. Fizika», 32 (249):5 (2011), 51–56

[6] Ya. T. Megraliev, “Ob odnoi obratnoi kraevoi zadache dlya giperbolicheskogo uravneniya vtorogo poryadka s integralnym usloviem pervogo roda”, Vestnik Bryanskogo gosudarstvennogo universiteta, 2011, no. 4, 22–28

[7] B. M. Budak, Sbornik zadach po matematicheskoi fizike, Nauka, M., 1972, 668 pp. | MR | Zbl

[8] K. I. Khudaverdiev, Issledovanie odnomernoi smeshannoi zadachi dlya odnogo klassa psevdogiperbolicheskikh uravnenii tretego poryadka s nelineinoi operatornoi pravoi chastyu, Chashyogly, Baku, 2010, 168 pp.