Right-side resolvents of discrete weighted shift operators with matrix weights
Problemy fiziki, matematiki i tehniki, no. 3 (2013), pp. 45-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

Right-side resolvents are constructed for discrete weighted shift operator and estimates of their norms are given.
Keywords: discrete weighted shift operator, right-side resolvent, stable vectorial subset.
@article{PFMT_2013_3_a7,
     author = {A. B. Antonevich and E. V. Pantsialeyeva},
     title = {Right-side resolvents of discrete weighted shift operators with matrix weights},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {45--54},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2013_3_a7/}
}
TY  - JOUR
AU  - A. B. Antonevich
AU  - E. V. Pantsialeyeva
TI  - Right-side resolvents of discrete weighted shift operators with matrix weights
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2013
SP  - 45
EP  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2013_3_a7/
LA  - ru
ID  - PFMT_2013_3_a7
ER  - 
%0 Journal Article
%A A. B. Antonevich
%A E. V. Pantsialeyeva
%T Right-side resolvents of discrete weighted shift operators with matrix weights
%J Problemy fiziki, matematiki i tehniki
%D 2013
%P 45-54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2013_3_a7/
%G ru
%F PFMT_2013_3_a7
A. B. Antonevich; E. V. Pantsialeyeva. Right-side resolvents of discrete weighted shift operators with matrix weights. Problemy fiziki, matematiki i tehniki, no. 3 (2013), pp. 45-54. http://geodesic.mathdoc.fr/item/PFMT_2013_3_a7/

[1] A. B. Antonevich, A. A. Akhmatova, “Spektralnye svoistva diskretnogo operatora vzveshennogo sdviga”, Trudy instituta matematiki, 20:1 (2012), 14–21 | MR

[2] A. O. Gelfond, Ischislenie konechnykh raznostei, Nauka, M., 1967, 376 pp. | MR

[3] I. Ts. Gokhberg, I. A. Feldman, Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971, 352 pp. | MR

[4] A. B. Antonevich, Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Universitetskoe, Mn., 1988, 233 pp. | MR | Zbl

[5] A. B. Antonevich, A. Lebedev, Functional differential equations, v. I, $C^*$-theory, Longman Scientific Technical, Harlow, 1994, 504 pp. | MR | Zbl

[6] V. G. Kravchenko, G. S. Litvinchuk, Introduction to the Theory of Singular Integral Operators with Shift, Math. Appl., Kluwer Academic Publishers, Dordrecht–Boston–London, 1994, 289 pp. | MR

[7] Karapetiants N., Samko S., Equations with involutive operators, Birkhäuser, Boston–Basel–Berlin, 2001, 427 pp. | MR | Zbl

[8] A. B. Antonevich, “Kogerentnaya lokalnaya giperbolichnost lineinogo rasshireniya i suschestvennye spektry operatora vzveshennogo sdviga na otrezke”, Funktsionalnyi analiz i ego pril., 39:1 (2005), 52–69 | MR

[9] I. U. Bronshtein, Neavtonomnye dinamicheskie sistemy, Shtiintsa, Kishinev, 1984, 292 pp. | MR

[10] A. B. Antonevich, “Ob odnoi faktorizatsii raznostnogo operatora”, Izvestiya AN BSSR. Ser. fiz.-mat. nauk, 1978, no. 3, 10–15 | Zbl

[11] I. M. Glazman, Yu. I. Lyubich, Konechnomernyi lineinyi analiz v zadachakh, Nauka, M., 1969, 477 pp. | MR | Zbl

[12] A. B. Antonevich, J. Jakubowska, “Weighted translation operators generated by mappings with saddle points: a model class”, J. Math. Sci., 164:4 (2010), 497–517 | DOI | MR