Polarization transformers of electromagnetic waves based on composite media with a helical structure
Problemy fiziki, matematiki i tehniki, no. 3 (2013), pp. 34-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Computer simulation was carried out in the microwave range based on the finite element method for the frequency dependence of the ellipticity coefficient of reflected wave for single-turn and double-turn helices and two-dimensional arrays consisting of the same helices. The possibility of the transformation of the incident linearly polarized electromagnetic waves in a circularly polarized wave reflected from the two-dimensional array on the basis of a single-turn and double-turn helices was shown. Reflected circularly polarized wave is observed at frequencies close to the resonance and doesn’t depend on the orientation of the plane polarization of incident wave relative to the axis of the helices.
Mots-clés : simulation
Keywords: transformation of polarization, single-turn and double-turn helices, ellipticity coefficient.
@article{PFMT_2013_3_a5,
     author = {A. L. Samofalov and I. A. Faniayeu and I. V. Semchenko and S. A. Khakhomov},
     title = {Polarization transformers of electromagnetic waves based on composite media with a helical structure},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {34--38},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2013_3_a5/}
}
TY  - JOUR
AU  - A. L. Samofalov
AU  - I. A. Faniayeu
AU  - I. V. Semchenko
AU  - S. A. Khakhomov
TI  - Polarization transformers of electromagnetic waves based on composite media with a helical structure
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2013
SP  - 34
EP  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2013_3_a5/
LA  - ru
ID  - PFMT_2013_3_a5
ER  - 
%0 Journal Article
%A A. L. Samofalov
%A I. A. Faniayeu
%A I. V. Semchenko
%A S. A. Khakhomov
%T Polarization transformers of electromagnetic waves based on composite media with a helical structure
%J Problemy fiziki, matematiki i tehniki
%D 2013
%P 34-38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2013_3_a5/
%G ru
%F PFMT_2013_3_a5
A. L. Samofalov; I. A. Faniayeu; I. V. Semchenko; S. A. Khakhomov. Polarization transformers of electromagnetic waves based on composite media with a helical structure. Problemy fiziki, matematiki i tehniki, no. 3 (2013), pp. 34-38. http://geodesic.mathdoc.fr/item/PFMT_2013_3_a5/

[1] A. L. Drabkin, V. L. Zuzenko, Antenno-fidernye ustroistva, Sov. radio, M., 1961, 816 pp.

[2] O. A. Yurtsev, A. V. Runov, A. N. Kazarin, Spiralnye antenny, Sov. radio, M., 1974, 224 pp.

[3] I. V. Semchenko i dr., “Issledovanie polyarizatsii elektromagnitnogo izlucheniya, rasseyannogo na metallicheskoi spirali”, Lazernaya i optiko-elektronnaya tekhnika, 2002, no. 7, 84–91

[4] S. A. Khakhomov, A. L. Samofalov, S. A. Tretyakov, “Poluchenie tsirkulyarno-polyarizovannoi otrazhennoi volny s pomoschyu iskusstvennoi ploskoi reshetki iz odnovitkovykh spiralei”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2006, no. 6 (39), Ch. 2, 87–90

[5] I. V. Semchenko, S. A. Khakhomov, A. L. Samofalov, “Preobrazovanie polyarizatsii elektromagnitnykh voln spiralnymi izluchatelyami”, Radiotekhnika i elektronika, 52:8 (2007), 917–922

[6] I. V. Semchenko, S. A. Khakhomov, A. L. Samofalov, “Optimalnaya forma spirali: ravenstvo dielektricheskikh, magnitnykh i kiralnykh svoistv”, Izvestiya vysshikh uchebnykh zavedenii. Fizika, 2:5 (2009), 30–36

[7] I. V. Semchenko et al., “Microwave analogy of optical properties of cholesteric liquid crystals with local chirality under normal incidence of waves”, Journal of Physics D: Applied Physics, 32:24 (1999), 3222–3226 | DOI

[8] I. V. Semchenko et al., “Electromagnetic waves in artificial chiral structures with dielectric and magnetic properties”, Electromagnetics, 21:5 (2001), 401–414 | DOI

[9] I. V. Semchenko, S. A. Khakhomov, “Artificial anisotropic chiral structures with dielectric and magnetic properties at oblique incidence of electromagnetic waves”, 2001 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (Belem, Brazil, 2001), 227–230

[10] I. V. Semchenko, S. A. Khakhomov, “Artificial uniaxial bianisotropic media at oblique incidence of electromagnetic waves”, Electromagnetics, 22:1 (2002), 71–84 | DOI

[11] I. V. Semchenko, S. A. Khakhomov, A. L. Samofalov, Ustroistvo dlya preobrazovaniya polyarizatsii elektromagnitnoi volny, pat. 2316857 Ros. Federatsiya: MPK7 H 01 Q 15/24, N 01 Q 21/06; zayavitel i patento-obladatel UO «Gomelskii gos. un-t. im. F. Skoriny»; No 2006112520/09, zayavl. 14.04.2006; opubl. 10.02.2008; Патенты России. Официальный бюллетень «Изобретения. Полезные модели» (с полным описанием изобретений к патентам), 2008, No 4, ФИПС, М., 1 электрон. опт. диск (CD-ROM) ([Элекронный ресурс]: полнотекстовая база данных (602 Мб))

[12] I. V. Semchenko i dr., “Izluchenie tsirkulyarno polyarizovannykh voln sverkhvysokochastotnogo diapazona ploskoi periodicheskoi strukturoi iz $\Omega$-elementov”, Radiotekhnika i elektronika, 52:9 (2007), 1084–1088

[13] I. V. Semchenko, S. A. Khakhomov, A. L. Samofalov, “Ispolzovanie parnykh spiralei optimalnoi formy dlya sozdaniya slabootrazhayuschikh pokrytii v SVCh diapazone”, Problemy fiziki, matematiki i tekhniki, 2009, no. 1 (1), 33–39

[14] I. V. Semchenko, S. A. Khakhomov, A. P. Balmakov, “Polyarizatsionnaya selektivnost iskusstvennykh anizotropnykh struktur na osnove DNK-podobnykh spiralei”, Kristallografiya, 55:6 (2010), 979–984

[15] I. V. Semchenko, S. A. Khakhomov, A. P. Balmakov, “Polarization selectivity of interaction of DNA molecules with X-ray radiation”, Biophysics, 55:2 (2010), 194–198 | DOI

[16] I. V. Semchenko, S. A. Khakhomov, A. L. Samofalov, “Helices of optimal shape for nonreflecting covering”, The European Physical Journal. Applied Physics, 49:3 (2010), ap09156 | DOI

[17] A. L. Samofalov, I. V. Semchenko, S. A. Khakhomov, “Modelirovanie i issledovanie iskusstvennykh anizotropnykh struktur s bolshoi kiralnostyu v SVCh diapazone”, Problemy fiziki, matematiki i tekhniki, 2011, no. 3 (8), 28–31

[18] I. V. Semchenko i dr., “Issledovanie svoistv iskusstvennykh anizotropnykh struktur s bolshoi kiralnostyu”, Kristallografiya, 56:3 (2011), 398–405

[19] I. V. Semchenko i dr., “Preimuschestva iskusstvennykh slabo otrazhayuschikh struktur na osnove optimalnykh spiralei pri prelomlenii i pogloschenii elektromagnitnykh voln”, Problemy fiziki, matematiki i tekhniki, 2011, no. 4 (9), 64–67

[20] A. P. Balmakov i dr., “Polyarizator tsirkulyarno-polyarizovannogo SVCh izlucheniya na osnove dvukhspiralnykh chastits”, Problemy fiziki, matematiki i tekhniki, 2013, no. 1 (14), 7–12

[21] A. L. Samofalov, “Ispolzovanie spiralnykh izluchatelei dlya preobrazovaniya polyarizatsii elektromagnitnykh voln”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2009, no. 4 (55), Ch. 2, 176–183