Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2013_3_a14, author = {V. N. Semenchuk and V. F. Veliasnitski}, title = {Finite groups with given properties of critical subgroups}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {89--92}, publisher = {mathdoc}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2013_3_a14/} }
V. N. Semenchuk; V. F. Veliasnitski. Finite groups with given properties of critical subgroups. Problemy fiziki, matematiki i tehniki, no. 3 (2013), pp. 89-92. http://geodesic.mathdoc.fr/item/PFMT_2013_3_a14/
[1] G. A. Miller, H. C. Moreno, “Nonabelian groups in which every subgroup is abelian”, Trans. Amer. Math. Soc., 4 (1903), 398–404 | DOI | MR | Zbl
[2] O. Yu. Shmidt, “Gruppy, vse podgruppy kotorykh spetsialnye”, Mat. sb., 31:3 (1924), 366–372
[3] B. Huppert, “Normalteiler und maximal Untergruppen endlichen Gruppen”, Math. Z., 60 (1954), 409–434 | DOI | MR | Zbl
[4] K. Doerk, “Minimal nicht Uberauflosbare, endliche Gruppen”, Math. Z., 1966, 198–205 | DOI | MR | Zbl
[5] V. N. Semenchuk, “Minimalnye ne $\mathfrak{F}$-gruppy”, Algebra i logika, 18:3 (1979), 348–382 | MR | Zbl
[6] V. N. Semenchuk, “Konechnye gruppy s sistemoi minimalnykh ne $\mathfrak{F}$-podgrupp”, Podgruppovoe stroenie konechnykh grupp, Nauka i tekhnika, Minsk, 1981, 138–149 | MR
[7] V. N. Knyagina, V. S. Monakhov, “O konechnykh gruppakh s nekotorymi subnormalnymi podgruppami Shmidta”, Sibirskii matem. zhurn., 45:6 (2004), 1316–1322 | MR | Zbl
[8] V. A. Vedernikov, “Konechnye gruppy s subnormalnymi podgruppami Shmidta”, Algebra i logika, 46:6 (2007), 669–687 | MR | Zbl
[9] O. H. Kegel, “Untergruppenverbande endlicher Gruppen, die Subnormalteilorverband echt enthalten”, Arch. Math., 30 (1978), 225–228 | DOI | MR | Zbl
[10] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR | Zbl
[11] A. F. Vasilev, S. F. Kamornikov, V. N. Semenchuk, “O reshetkakh podgrupp konechnykh grupp”, Beskonechnye gruppy i primykayuschie algebraicheskie sistemy, eds. N. S. Chernikov i dr., In-t matematiki Akad. Ukrainy, Kiev, 1993, 27–54 | MR