Generalizing poliadic operations
Problemy fiziki, matematiki i tehniki, no. 2 (2013), pp. 50-57
Cet article a éte moissonné depuis la source Math-Net.Ru
For any integers $l\geqslant 2$, $k\geqslant 2$, of a subset $T$ of the symmetric group $\mathbf{S}_k$ and semi-group $A$ on the Cartesian product $T\times A^k$ an $l$-ary operation $[\,]_{l, T, k}$ is determined. This $l$-ary operation is similar to the Post poliadic operations, which he defined on the set of poliadic permulations. In the paper the properties of the operation $[\,]_{l, T, k}$ are studied.
Keywords:
operation, semigroup, $l$-ary semigroup, $l$-ary group, skew element, idempotent.
Mots-clés : group
Mots-clés : group
@article{PFMT_2013_2_a7,
author = {A. M. Gal'mak},
title = {Generalizing poliadic operations},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {50--57},
year = {2013},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2013_2_a7/}
}
A. M. Gal'mak. Generalizing poliadic operations. Problemy fiziki, matematiki i tehniki, no. 2 (2013), pp. 50-57. http://geodesic.mathdoc.fr/item/PFMT_2013_2_a7/
[1] A. M. Galmak, “Mnogomestnye assotsiativnye operatsii na dekartovykh stepenyakh”, Vestsi NAN Belarusi, 2008, no. 3, 28–34 | MR
[2] A. M. Galmak, Mnogomestnye operatsii na dekartovykh stepenyakh, Izd. tsentr BGU, Minsk, 2009, 265 pp.
[3] E. L. Post, “Polyadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–350 | DOI | MR
[4] S. A. Rusakov, Algebraicheskie $n$-arnye sistemy, Navuka i tekhnika, Mn., 1992, 245 pp.