Permuteral subgroups and their applications in finite groups
Problemy fiziki, matematiki i tehniki, no. 2 (2013), pp. 35-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be a subgroup of a group $G$. The permutizer of $H$ in $G$ is the subgroup $P_G(H)=\langle x\in G | \langle x\rangle H=H\langle x\rangle\rangle$. The subgroup $H$ of a group $G$ is called permuteral in $G$, if $P_G(H)=G$; strongly permuteral in $G$, if $P_U(H)=U$ whenever $H\leqslant U\leqslant G$. The properties of finite groups with given systems of permuteral and strongly permuteral subgroups are obtained. New criteria of w-supersolubility and supersolubility of groups are received.
Keywords: finite group, permutizer of a subgroup, permuteral subgroup, supersoluble group, w-supersoluble group, $\mathbf{P}$-subnormal subgroup.
@article{PFMT_2013_2_a5,
     author = {A. F. Vasil'ev and V. A. Vasil'ev and T. I. Vasil'eva},
     title = {Permuteral subgroups and their applications in finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {35--38},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2013_2_a5/}
}
TY  - JOUR
AU  - A. F. Vasil'ev
AU  - V. A. Vasil'ev
AU  - T. I. Vasil'eva
TI  - Permuteral subgroups and their applications in finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2013
SP  - 35
EP  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2013_2_a5/
LA  - ru
ID  - PFMT_2013_2_a5
ER  - 
%0 Journal Article
%A A. F. Vasil'ev
%A V. A. Vasil'ev
%A T. I. Vasil'eva
%T Permuteral subgroups and their applications in finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2013
%P 35-38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2013_2_a5/
%G ru
%F PFMT_2013_2_a5
A. F. Vasil'ev; V. A. Vasil'ev; T. I. Vasil'eva. Permuteral subgroups and their applications in finite groups. Problemy fiziki, matematiki i tehniki, no. 2 (2013), pp. 35-38. http://geodesic.mathdoc.fr/item/PFMT_2013_2_a5/

[1] H. G. Bray and others, Between Nilpotent and Solvable, ed. M. Weinstein, Polugonal Publishing House, Passaic, 1982, 240 pp. | MR | Zbl

[2] J. Zhang, “A note on finite groups satisfying the permutizer condition”, Sci. Bull., 31 (1986), 363–365 | MR | Zbl

[3] J. C. Beidleman, D. J. S. Robinson, “On finite groups satisfying the permutizer condition”, J. Algebra, 191:2 (1997), 686–703 | DOI | MR | Zbl

[4] A. Ballester-Bolinches, R. Esteban-Romero, “On a question of Beidleman and Robinson”, Comm. Algebra, 30:12 (2002), 5757–5770 | DOI | MR | Zbl

[5] X. Liu, Ya. Wang, “Implications of permutizers of some subgroups in finite groups”, Comm. Algebra, 33 (2005), 559–565 | DOI | MR | Zbl

[6] Sh. Qiao, G. Qian, Ya. Wang, “Influence of permutizers of subgroups on the structure of finite groups”, J. Pure and Applied Algebra, 212:10 (2008), 2307–2313 | DOI | MR | Zbl

[7] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR | Zbl

[8] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR

[9] A. F. Vasilev, T. I. Vasileva, V. N. Tyutyanov, “O konechnykh gruppakh sverkhrazreshimogo tipa”, Sib. mat. zhurn., 51:6 (2010), 1270–1281 | MR

[10] A. F. Vasilev, T. I. Vasileva, V. N. Tyutyanov, “O proizvedeniyakh $\mathbf{P}$-subnormalnykh podgrupp v konechnykh gruppakh”, Sib. mat. zhurn., 53:1 (2012), 59–67 | MR

[11] O. H. Kegel, “Produkte nilpotenter Gruppen”, Arch. Math., 12:2 (1961), 90–93 | DOI | MR | Zbl

[12] H. Wielandt, “Über Produkte von nilpotenten Gruppen, III”, J. Math. B, 2:4 (1958), 611–618 | MR | Zbl

[13] V. Kniahina, V. Monakhov, “On supersolvability of finite groups with $\mathbf{P}$-subnormal subgroups”, International J. of Group Theory, 2:4 (2013), 21–29