Permuteral subgroups and their applications in finite groups
Problemy fiziki, matematiki i tehniki, no. 2 (2013), pp. 35-38

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be a subgroup of a group $G$. The permutizer of $H$ in $G$ is the subgroup $P_G(H)=\langle x\in G | \langle x\rangle H=H\langle x\rangle\rangle$. The subgroup $H$ of a group $G$ is called permuteral in $G$, if $P_G(H)=G$; strongly permuteral in $G$, if $P_U(H)=U$ whenever $H\leqslant U\leqslant G$. The properties of finite groups with given systems of permuteral and strongly permuteral subgroups are obtained. New criteria of w-supersolubility and supersolubility of groups are received.
Keywords: finite group, permutizer of a subgroup, permuteral subgroup, supersoluble group, w-supersoluble group, $\mathbf{P}$-subnormal subgroup.
@article{PFMT_2013_2_a5,
     author = {A. F. Vasil'ev and V. A. Vasil'ev and T. I. Vasil'eva},
     title = {Permuteral subgroups and their applications in finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {35--38},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2013_2_a5/}
}
TY  - JOUR
AU  - A. F. Vasil'ev
AU  - V. A. Vasil'ev
AU  - T. I. Vasil'eva
TI  - Permuteral subgroups and their applications in finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2013
SP  - 35
EP  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2013_2_a5/
LA  - ru
ID  - PFMT_2013_2_a5
ER  - 
%0 Journal Article
%A A. F. Vasil'ev
%A V. A. Vasil'ev
%A T. I. Vasil'eva
%T Permuteral subgroups and their applications in finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2013
%P 35-38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2013_2_a5/
%G ru
%F PFMT_2013_2_a5
A. F. Vasil'ev; V. A. Vasil'ev; T. I. Vasil'eva. Permuteral subgroups and their applications in finite groups. Problemy fiziki, matematiki i tehniki, no. 2 (2013), pp. 35-38. http://geodesic.mathdoc.fr/item/PFMT_2013_2_a5/