Radiation pressure on the spherical nanoparticle with a concentric shell in the field of a plane electromagnetic wave
Problemy fiziki, matematiki i tehniki, no. 2 (2013), pp. 11-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study theoretically the radiation pressure on a spherical nanoparticle with a concentric shell in the field of a plane electromagnetic wave. The dependencies of the radiation pressure and absorption cross sections on the wavelength of the incident radiation for different thickness of nanoshell at the fixed size of the silica nanoparticle with gold shell located in water are investigated. The authors also study the dependence of the wavelength corresponding to the maxima of the cross sections on the thickness of the shell. The dependencies of the maximal displacement of the nanoparticle on the time of the radiation acting and on the thickness of the nanoshells are considered.
Keywords: radiation pressure, spherical nanoshell, absorption cross section
Mots-clés : nanoparticle displacement.
@article{PFMT_2013_2_a1,
     author = {I. I. Kurhuzenkava and D. V. Guzatov and L. S. Gaida},
     title = {Radiation pressure on the spherical nanoparticle with a concentric shell in the field of a plane electromagnetic wave},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {11--17},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2013_2_a1/}
}
TY  - JOUR
AU  - I. I. Kurhuzenkava
AU  - D. V. Guzatov
AU  - L. S. Gaida
TI  - Radiation pressure on the spherical nanoparticle with a concentric shell in the field of a plane electromagnetic wave
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2013
SP  - 11
EP  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2013_2_a1/
LA  - ru
ID  - PFMT_2013_2_a1
ER  - 
%0 Journal Article
%A I. I. Kurhuzenkava
%A D. V. Guzatov
%A L. S. Gaida
%T Radiation pressure on the spherical nanoparticle with a concentric shell in the field of a plane electromagnetic wave
%J Problemy fiziki, matematiki i tehniki
%D 2013
%P 11-17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2013_2_a1/
%G ru
%F PFMT_2013_2_a1
I. I. Kurhuzenkava; D. V. Guzatov; L. S. Gaida. Radiation pressure on the spherical nanoparticle with a concentric shell in the field of a plane electromagnetic wave. Problemy fiziki, matematiki i tehniki, no. 2 (2013), pp. 11-17. http://geodesic.mathdoc.fr/item/PFMT_2013_2_a1/

[1] L. D. Landau, E. M. Livshits, Elektrodinamika sploshnykh sred, Nauka, M., 1982, 622 pp.

[2] A. Eshkin, “Davlenie lazernogo izlucheniya”, UFN, 110:1 (1973), 101–116 | DOI

[3] A. Ashkin et al., “Observation of a single-beam gradient force optical trap for dielectric particles”, Opt. Lett., 11 (1986), 288–290 | DOI

[4] A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams”, Nature, 330 (1987), 769–771 | DOI

[5] A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria”, Science, 235 (1987), 1517–1520 | DOI

[6] V. V. Klimov, Nanoplazmonika, Fizmatlit, M., 2009, 480 pp.

[7] D. V. Guzatov, L. S. Gaida, A. A. Afanas'ev, “Theoretical investigation of the radiation pressure force acting on a spherical nanoparticle located in the laser radiation field”, Nonlin. Phenom. Comp. Syst., 14:4 (2011), 391–398

[8] V. V. Tuchin (ed.), Handbook of optical biomedical diagnostics, SPIE Press, Bellingham, WA, 2002, 1110 pp.

[9] N. G. Khlebtsov, “Optika i biofotonika nanochastits s plazmonnym rezonansom”, Kvant. Elektron., 38:6 (2008), 504–529

[10] R. D. Averitt, S. L. Westcott, N. J. Halas, “Linear optical properties of gold nanoshells”, J. Opt. Soc. Am. B, 16 (1999), 1824–1832 | DOI

[11] J. Popp, F. Sondermann (eds.), IPHT Jena annual report 2007, Color-Druck Zwickau GmbH Co. KG, Zwickau, 2008, 148 pp.

[12] M. Kitz et al., “Vapor bubble generation around gold nano-particles and its application to damaging of cells”, Biomed. Opt. Express, 2:2 (2011), 291–304 | DOI

[13] W. Lu et al., “Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres”, Biomat., 31:9 (2010), 2617–2626 | DOI

[14] D. V. Guzatov, L. S. Gaida, A. A. Afanasev, “Teoreticheskoe issledovanie sily svetovogo davleniya, deistvuyuschei na sfericheskuyu dielektricheskuyu chastitsu proizvolnogo razmera v interferentsionnom pole dvukh ploskikh monokhromaticheskikh elektromagnitnykh voln”, Kvant. Elektron., 38:12 (2008), 1155–1162

[15] M. Kerker, The scattering of light, Academic Press, New York, 1969, 667 pp.

[16] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979, 832 pp. | MR

[17] Dzh. A. Stretton, Teoriya elektromagnetizma, GITTL, M.–L., 1948, 540 pp.

[18] M. J. Weber, Handbook of optical materials, CRC Press, Boca Raton, FL, 2003, 512 pp.

[19] S. M. Kachan, A. N. Ponyavina, “Resonance absorption spectra of composites containing metal-coated nanoparticles”, J. Mol. Struct., 563–564 (2001), 267–272 | DOI

[20] E. Prodan et al., “A hybridization model for the Plasmon response of complex nanostructures”, Science, 302 (2003), 419–422 | DOI