Calculation of the attenuation coefficient of the sound field of a spherical radiator by penetrable spherical shell
Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 48-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The analytical solution of the boundary problem which describes the process of penetration of the sound field of a spherical radiator located inside a thin unclosed spherical shell, through the permeable spherical shell is constructed. The influence of some parameters of the problem on the value of the attenuation coefficient (screening) of a sound field inside the spherical shell is numerically investigated.
Keywords: dual series equations for Legendre polynomials, infinite system of linear algebraic equations of the second kind with a completely continuous operator, attenuation coefficient of a sound field.
@article{PFMT_2013_1_a8,
     author = {G. Ch. Shushkevich and N. N. Kiseleva},
     title = {Calculation of the attenuation coefficient of the sound field of a spherical radiator by penetrable spherical shell},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {48--54},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2013_1_a8/}
}
TY  - JOUR
AU  - G. Ch. Shushkevich
AU  - N. N. Kiseleva
TI  - Calculation of the attenuation coefficient of the sound field of a spherical radiator by penetrable spherical shell
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2013
SP  - 48
EP  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2013_1_a8/
LA  - ru
ID  - PFMT_2013_1_a8
ER  - 
%0 Journal Article
%A G. Ch. Shushkevich
%A N. N. Kiseleva
%T Calculation of the attenuation coefficient of the sound field of a spherical radiator by penetrable spherical shell
%J Problemy fiziki, matematiki i tehniki
%D 2013
%P 48-54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2013_1_a8/
%G ru
%F PFMT_2013_1_a8
G. Ch. Shushkevich; N. N. Kiseleva. Calculation of the attenuation coefficient of the sound field of a spherical radiator by penetrable spherical shell. Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 48-54. http://geodesic.mathdoc.fr/item/PFMT_2013_1_a8/

[1] D. R. Raichel, The science and applications of acoustics, Springer Science+Business Media, NY, 2006, 663 pp.

[2] 6th National Conference ACOUSTICS 2012 (Date of access: 05.11.2012) http://conferences.ionio.gr/acoustics2012/en/

[3] International Conference on Noise and Vibration Engineering (Date of access: 05.11.2012) http://www.isma-isaac.be/

[4] Second International Conference of Acoustics and Vibration, ISAV2012, Engineering (Date of access: 05.11.2012) http://isav.ir/2012/index.php/

[5] III Vseros. nauch.-prakt. konf. s mezhdunar. uchastiem «Zaschita naseleniya ot povyshennogo shumovogo vozdeistviya» (Data dostupa: 07.11.2012) http://onlinereg.ru/noise2011

[6] L. A. Marnevskaya, Reshenie nekotorykh zadach difraktsii zvukovykh voln na sferakh i sfericheskikh priemnikakh, Avtoref. dis. ... kand. fiz.-mat. nauk: 01.01.02, Bel. gos. un-t, Mn., 1979, 18 pp.

[7] C. G. Gaunaurd et al., “Acoustic scattering by a pair of spheres”, J. Acous. Soc. Amer., 98 (1995), 495–507

[8] P. Gabrielli, M. Mercier-Finidori, “Acoustic scattering by two spheres: Multiple scattering and symmetry considerations”, J. of Sound and Vibration, 241 (2001), 423–439

[9] Dzh. A. Rumeliotis, A. D. Kotsis, “Rasseyanie zvukovykh voln na dvukh sfericheskikh telakh, odno iz kotorykh imeet malyi radius”, Akusticheskii zhurnal, 5:1 (2007), 38–49

[10] G. A. Shebeko, “Difraktsiya skalyarnoi sfericheskoi volny na neskolkikh sharakh, raspolozhennykh v poluprostranstve”, Vestnik BGU. Ser. 1, 1970, no. 3, 5–10

[11] I. H. Sloan, R. S. Womersley, “Good approximation on the sphere, with application to geodesy and the scattering of sound”, J. of Computational and Applied Mathematics, 2002, no. 149, 227–237 | MR | Zbl

[12] N. C. Skaropoulos et al., “Interactive resonant scattering by a cluster of air bubbles in water”, J. Acous. Soc. Amer., 113 (2003), 3001–3011

[13] Ch.-N. Wang, Ch.-Ch. Tse, “The scattering of an acoustic wave incident on the rigid floating body”, Applied Acoustics, 64:12 (2003), 1187–1204

[14] L. N. Huang, “Trapping and absorption of sound waves Ias creened sphere”, Wave Motion, 12:1 (1990), 1–13 | Zbl

[15] L. N. Huang, “Trapping and absorption of sound waves II a sphere covered with a porous layer”, Wave Motion, 12:5 (1990), 401–414 | Zbl

[16] H. H. Huang, G. C. Gaunaurd, “Acoustic scattering of a plane wave by two spherical elastic shells”, J. Acous. Soc. Amer., 98 (1995), 2149–2156

[17] H. H. Huang, G. C. Gaunaurd, “Acoustic scattering of a plane wave by two spherical elastic shells above the coincidence frequency”, J. Acous. Soc. Amer., 101 (1997), 2659–2668

[18] N. V. Larin, L. A. Tolokonnikov, “Rasseyanie zvuka neodnorodnym termouprugim sfericheskim sloem”, Prikladnaya matematika i mekhanika, 74:4 (2010), 645–654 | MR

[19] V. A. Rezunenko, “Difraktsiya ploskoi zvukovoi volny na sfere s krugovym otverstiem”, Visnik Kharkiv. nats. univer. imen. V. N. Karazina. Ser. «Mat., prik. mat. i mekh.», 2009, no. 850, 71–77 | Zbl

[20] V. T. Erofeenko, Teoremy slozheniya, Nauka i tekhnika, Minsk, 1989, 240 pp. | MR | Zbl

[21] E. A. Ivanov, Difraktsiya elektromagnitnykh voln na dvukh telakh, Nauka i tekhnika, Minsk, 1968, 584 pp.

[22] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i tablitsami, Nauka, M., 1979, 830 pp. | MR

[23] E. L. Shendarev, Izluchenie i rasseyanie zvuka, Sudostroenie, L., 1989, 304 pp.

[24] G. Ch. Shushkevich, Raschet elektrostaticheskikh polei metodom parnykh, troinykh uravnenii s ispolzovaniem teorem slozheniya, GrGU, Grodno, 1999, 238 pp.

[25] G. Ch. Shushkevich, S. V. Shushkevich, Kompyuternye tekhnologii v matematike. Sistema Mathcad 14, v. 1, Izd-vo Grevtsova, Minsk, 2010, 287 pp.