Correction method for solving perturbed parametric linear-quadratic optimal control problems in the neighbourhood of irregular parameter value
Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 88-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

A family of one-parametric linear-quadratic optimal control problems with singular arcs is considered. A method for solving perturbed problems in the neighbourhood of irregular parameter value on condition that unperturbed problem solution is known is given.
Keywords: optimal control, parametric optimization, perturbed problems, linear-quadratic problems
Mots-clés : singular arcs.
@article{PFMT_2013_1_a15,
     author = {N. M. Fedartsova},
     title = {Correction method for solving perturbed parametric linear-quadratic optimal control problems in the neighbourhood of irregular parameter value},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {88--95},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2013_1_a15/}
}
TY  - JOUR
AU  - N. M. Fedartsova
TI  - Correction method for solving perturbed parametric linear-quadratic optimal control problems in the neighbourhood of irregular parameter value
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2013
SP  - 88
EP  - 95
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2013_1_a15/
LA  - ru
ID  - PFMT_2013_1_a15
ER  - 
%0 Journal Article
%A N. M. Fedartsova
%T Correction method for solving perturbed parametric linear-quadratic optimal control problems in the neighbourhood of irregular parameter value
%J Problemy fiziki, matematiki i tehniki
%D 2013
%P 88-95
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2013_1_a15/
%G ru
%F PFMT_2013_1_a15
N. M. Fedartsova. Correction method for solving perturbed parametric linear-quadratic optimal control problems in the neighbourhood of irregular parameter value. Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 88-95. http://geodesic.mathdoc.fr/item/PFMT_2013_1_a15/

[1] U. Felgenhauer, “Optimality and sensitivity for semilinear bang-bang type optimal control problems”, Int. J. Appl. Math. Comput. Sci., 14:4 (2004), 447–454 | MR | Zbl

[2] U. Felgenhauer, “Structural stability investigation of bang-singular-bang optimal controls”, J. Optimization Theory and Applications, 152:3 (2012), 605–631 | MR | Zbl

[3] O. I. Kostyukova, “Issledovanie svoistv reshenii parametricheskoi zadachi optimalnogo upravleniya v neregulyarnoi tochke”, Izvestiya RAN. Teoriya i sistemy upravleniya, 3 (2003), 68–79 | MR | Zbl

[4] F. Bonnans, A. Shapiro, Perturbation analysis of Optimization problems, Springer, New York–Berlin, 2000, 601 pp. | MR

[5] K. Malanowski, H. Maurer, “Sensitivity analysis of optimal control problems subject to higher order state constraints”, Annals of Operations Research, 101 (2001), 43–73 | MR | Zbl

[6] H. Maurer, N. Osmolovskii, “Second order optimality conditions for bang-bang control problems”, Control and Cybernetics, 32:3 (2003), 555–584 | Zbl

[7] O. I. Kostyukova, N. M. Fedortsova, “Issledovanie svoistv reshenii lineino-kvadratichnykh parametricheskikh zadach optimalnogo upravleniya”, Informatsionno-upravlyayuschie sistemy, 2012, no. 4 (59), 43–51

[8] E. B. Li, L. M. Markus, Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp. | MR

[9] O. I. Kostyukova, M. A. Kurdina, “Issledovanie reshenii parametricheskikh zadach optimalnogo upravleniya s osobymi uchastkami”, Computer Modelling and New Technologies, 10:2 (2006), 57–66 | MR