Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2013_1_a15, author = {N. M. Fedartsova}, title = {Correction method for solving perturbed parametric linear-quadratic optimal control problems in the neighbourhood of irregular parameter value}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {88--95}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2013_1_a15/} }
TY - JOUR AU - N. M. Fedartsova TI - Correction method for solving perturbed parametric linear-quadratic optimal control problems in the neighbourhood of irregular parameter value JO - Problemy fiziki, matematiki i tehniki PY - 2013 SP - 88 EP - 95 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2013_1_a15/ LA - ru ID - PFMT_2013_1_a15 ER -
%0 Journal Article %A N. M. Fedartsova %T Correction method for solving perturbed parametric linear-quadratic optimal control problems in the neighbourhood of irregular parameter value %J Problemy fiziki, matematiki i tehniki %D 2013 %P 88-95 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2013_1_a15/ %G ru %F PFMT_2013_1_a15
N. M. Fedartsova. Correction method for solving perturbed parametric linear-quadratic optimal control problems in the neighbourhood of irregular parameter value. Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 88-95. http://geodesic.mathdoc.fr/item/PFMT_2013_1_a15/
[1] U. Felgenhauer, “Optimality and sensitivity for semilinear bang-bang type optimal control problems”, Int. J. Appl. Math. Comput. Sci., 14:4 (2004), 447–454 | MR | Zbl
[2] U. Felgenhauer, “Structural stability investigation of bang-singular-bang optimal controls”, J. Optimization Theory and Applications, 152:3 (2012), 605–631 | MR | Zbl
[3] O. I. Kostyukova, “Issledovanie svoistv reshenii parametricheskoi zadachi optimalnogo upravleniya v neregulyarnoi tochke”, Izvestiya RAN. Teoriya i sistemy upravleniya, 3 (2003), 68–79 | MR | Zbl
[4] F. Bonnans, A. Shapiro, Perturbation analysis of Optimization problems, Springer, New York–Berlin, 2000, 601 pp. | MR
[5] K. Malanowski, H. Maurer, “Sensitivity analysis of optimal control problems subject to higher order state constraints”, Annals of Operations Research, 101 (2001), 43–73 | MR | Zbl
[6] H. Maurer, N. Osmolovskii, “Second order optimality conditions for bang-bang control problems”, Control and Cybernetics, 32:3 (2003), 555–584 | Zbl
[7] O. I. Kostyukova, N. M. Fedortsova, “Issledovanie svoistv reshenii lineino-kvadratichnykh parametricheskikh zadach optimalnogo upravleniya”, Informatsionno-upravlyayuschie sistemy, 2012, no. 4 (59), 43–51
[8] E. B. Li, L. M. Markus, Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp. | MR
[9] O. I. Kostyukova, M. A. Kurdina, “Issledovanie reshenii parametricheskikh zadach optimalnogo upravleniya s osobymi uchastkami”, Computer Modelling and New Technologies, 10:2 (2006), 57–66 | MR