Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2013_1_a14, author = {A. P. Starovoitov}, title = {Hermite--Pade approximants of the system {Mittag-Leffler} functions}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {81--87}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2013_1_a14/} }
A. P. Starovoitov. Hermite--Pade approximants of the system Mittag-Leffler functions. Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 81-87. http://geodesic.mathdoc.fr/item/PFMT_2013_1_a14/
[1] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, Nauka, M., 1981 | MR | Zbl
[2] C. Hermite, “Sur la fonction exponentielle”, C. R. Akad. Sci. (Paris), 77 (1873), 18–293
[3] Dzh. Beiker (ml.), P. Greivs-Morris, Approksimatsii Pade, v. 1, Osnovy teorii, Mir, M., 1986 ; т. 2, Обобщения и приложения | MR
[4] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl
[5] A. I. Aptekarev, V. I. Buslaev, A. Martines-Finkelshtein, S. P. Suetin, “Approksimatsii Pade, nepreryvnye drobi i ortogonalnye mnogochleny”, Uspekhi matem. nauk, 66:6 (402) (2011), 37–122 | MR | Zbl
[6] A. I. Aptekarev, A. E. Koielaars, “Approksimatsii Ermita–Pade i ansambli sovmestno ortogonalnykh mnogochlenov”, Uspekhi matem. nauk, 66:6 (402) (2011), 123–190 | MR | Zbl
[7] S. P. Suetin, “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, Uspekhi matem. nauk, 57:1 (2002), 45–142 | MR | Zbl
[8] J. P. Boyd, “Chebyshev expansion on intervals with branch points with application to the root of Kepler's equation: a Chebyshev–Hermite–Pade method”, J. of Comput. and Appl. Math., 223:2 (2009), 693–702 | MR | Zbl
[9] B. Beckermann, V. Kalyagin, Ana C. Matos, F. Wielonsky, How well does the Hermite–Pade approximation smooth the Gibbs phenomenon?, Math. Comput., 80:274 (2011), 931–958 | MR | Zbl
[10] V. N. Sorokin, “Tsiklicheskie grafy i teorema Aperi”, Uspekhi matem. nauk, 57:3 (2002), 99–134 | MR | Zbl
[11] W. VanAssche, “Continued fractions: from analytic number theory to constructive approximation”, Contemp. Math., 236, Amer. Math. Soc., 1999, 325–342 | MR
[12] A. I. Aptekarev (red.), Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sbornik statei, Sovr. probl. matem., 9, MIAN, M., 1988
[13] V. A. Kalyagin, “Approksimatsii Ermita–Pade i spektralnyi analiz nesimmetrichnykh operatorov”, Matem. sbornik, 185:6 (1994), 79–100 | MR | Zbl
[14] A. I. Aptekarev, V. A. Kalyagin, E. B. Saff, “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Approx., 30:2 (2009), 175–223 | MR | Zbl
[15] P. M. Bleher, A. B. J. Kuijlaars, “Random matrices with external source and multiple orthogonal polynomials”, Int. Math. Res. Not., 3 (2004), 109–129 | MR | Zbl
[16] A. I. Aptekarev, P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source, II”, Comm. Math. Phys., 259:2 (2005), 367–389 | MR | Zbl
[17] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Globalnyi rezhim raspredeleniya sobstvennykh znachenii sluchainykh matrits s angarmonicheskim potentsialom i vneshnim istochnikom”, TMF, 159:1 (2009), 34–57 | MR | Zbl
[18] F. Klein, Elementarnaya matematika s tochki zreniya vysshei, v. 1, Nauka, M., 1933
[19] A. I. Aptekarev, “O skhodimosti ratsionalnykh approksimatsii k naboru eksponent”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 1981, no. 1, 68–74 | MR | Zbl
[20] O. Perron, Die Lehre von der Kettenbrüchen, Teubner, Leipzig–Berlin, 1929 | Zbl
[21] A. I. Aptekarev, “Ob approksimatsiyakh Pade k naboru $\left\{_1F_1(1,c;\lambda_iz)\right\}_{i=1}^k$”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 1981, no. 2, 58–62 | MR | Zbl
[22] A. P. Starovoitov, N. A. Starovoitova, “Approksimatsii Pade funktsii Mittag–Lefflera”, Matem. sbornik, 198:7 (2007), 109–122 | MR | Zbl
[23] D. Braess, “On the conjecture of Meinardus on rational approximation of $e^x$, II”, J. Approx. Theory, 40:4 (1984), 375–379 | MR | Zbl
[24] V. A. Kalyagin, “Ob odnom klasse polinomov, opredelyaemykh dvumya sootnosheniyami ortogonalnosti”, Matem. sbornik, 110 (152):4 (1979), 609–627 | MR
[25] A. A. Gonchar, E. A. Rakhmanov, “O skhodimosti sovmestnykh approksimatsii Pade dlya sistem funktsii markovskogo tipa”, Tr. MIAN SSSR, 157, 1981, 31–48 | MR | Zbl
[26] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Ob approksimatsiyakh Ermita–Pade dlya sistem funktsii markovskogo tipa”, Matem. sbornik, 188:5 (1997), 33–58 | MR | Zbl
[27] E. M. Nikishin, “Sovmestnye approksimatsii Pade”, Matem. sbornik, 155:4 (1980), 499–519 | MR | Zbl
[28] E. M. Nikishin, “Asimptotika lineinykh form dlya sovmestnykh approksimatsii Pade”, Izv. vuzov. Ser. matem., 1986, no. 2, 33–41 | MR | Zbl
[29] Zh. Bustamante, Lopes G. Lagomasino, “Approksimatsii Ermita–Pade dlya sistemy Nikishina analiticheskikh funktsii”, Matem. sbornik, 183:11 (1992), 117–138 | MR | Zbl
[30] K. Driver, H. Stahl, “Normality in Nikishin systems”, Indag. Math. (N.S.), 5:2 (1994), 161–187 | MR | Zbl
[31] K. Driver, H. Stahl, “Simultaneus rational approximants to Nikishin systems, I”, Acta Sci. Math., 60 (1995), 245–263 | MR | Zbl
[32] K. Driver, H. Stahl, “Simultaneus rational approximants to Nikishin systems, II”, Acta Sci. Math., 61 (1995), 261–284 | MR | Zbl
[33] A. I. Aptekarev, “Asimptotika polinomov sovmestnoi ortogonalnosti v sluchae Andzhelesko”, Matem. sbornik, 136 (178):1 (1988), 56–84 | MR | Zbl
[34] A. I. Aptekarev, “Silnaya asimptotika mnogochlenov sovmestnoi ortogonalnosti dlya sistemy Nikishina”, Matem. sbornik, 190:5 (1999), 3–44 | MR | Zbl
[35] A. I. Aptekarev, V. G. Lysov, “Sistemy markovskikh funktsii, generiruemye grafami, i asimptotika ikh approksimatsii Ermita–Pade”, Matem. sbornik, 201:2 (2010), 29–78 | MR | Zbl
[36] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Sluchainye matritsy s vneshnim istochnikom i asimptotika sovmestno ortogonalnykh mnogochlenov”, Matem. sbornik, 202:2 (2011), 3–56 | MR | Zbl
[37] N. V. Ryabchenko, A. P. Starovoitov, G. N. Kazimirov, “Ermitovskaya approksimatsiya dvukh eksponent”, Problemy fiziki, matematiki i tekhniki, 2012, no. 1(10), 97–100
[38] Yu. V. Sidorov, M. V. Fedoryuk, M. I. Shabunin, Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, M., 1989 | MR | Zbl
[39] V. Shmidt, Diofantovy priblizheniya, Mir, M., 1983 | MR