About belonging of $\mathfrak{F}$-prefrattini subalgebras of multirings to class $\mathfrak{F}$
Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 79-80
Cet article a éte moissonné depuis la source Math-Net.Ru
Conditions at which any $\mathfrak{F}$-prefrattini subalgebra of multiring $A$ belong to class $\mathfrak{F}$, are considered.
Keywords:
multirings, $\mathfrak{F}$-central factor, frattini chief factor, $\mathfrak{F}$-prefrattini subalgebra, $\mathfrak{F}$-normalizer.
@article{PFMT_2013_1_a13,
author = {S. P. Novikov},
title = {About belonging of $\mathfrak{F}$-prefrattini subalgebras of multirings to class~$\mathfrak{F}$},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {79--80},
year = {2013},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2013_1_a13/}
}
S. P. Novikov. About belonging of $\mathfrak{F}$-prefrattini subalgebras of multirings to class $\mathfrak{F}$. Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 79-80. http://geodesic.mathdoc.fr/item/PFMT_2013_1_a13/
[1] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989, 253 pp. | MR
[2] S. P. Novikov, “O $\Omega$-profrattinievykh podalgebrakh multikolets”, Voprosy algebry, 6, Izd-vo «Universitetskoe», Minsk, 1992, 7–12
[3] S. P. Novikov, “Svyaz $\mathfrak{F}$-profrattinievykh podalgebr i $\mathfrak{F}$-normalizatorov multikolets”, Vestnik BGU. Seriya 1, 1996, no. 1, 46–48 | MR | Zbl