Weak solutions of hyperbolic even-order operator-differential equations with variable domains
Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 67-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence and uniqueness of weak solutions $u(t)\in L_2(]0,T[,H)$ of boundary value problem for a two-term even-order hyperbolic operator-differential equation with unbounded operator coefficient $A(t)$, having $t$-depending domain $D(A(t))$. It is shown that for a smooth right-hand part the weak solutions of boundary value problem are smooth, i. e. they satisfy the equation almost everywhere on $]0,T[$ in $H$ and the boundary conditions in the usual sense. An example of the new correct boundary value problem for fourth-order partial differential equation with unsteady boundary conditions on the space variables is given.
Keywords: сorrectness by Hadamard, operator-differential equation, unbounded operator, weak solution.
Mots-clés : variable domain
@article{PFMT_2013_1_a11,
     author = {F. E. Lomovtsev and D. A. Lyakhov},
     title = {Weak solutions of hyperbolic even-order operator-differential equations with variable domains},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {67--73},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2013_1_a11/}
}
TY  - JOUR
AU  - F. E. Lomovtsev
AU  - D. A. Lyakhov
TI  - Weak solutions of hyperbolic even-order operator-differential equations with variable domains
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2013
SP  - 67
EP  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2013_1_a11/
LA  - ru
ID  - PFMT_2013_1_a11
ER  - 
%0 Journal Article
%A F. E. Lomovtsev
%A D. A. Lyakhov
%T Weak solutions of hyperbolic even-order operator-differential equations with variable domains
%J Problemy fiziki, matematiki i tehniki
%D 2013
%P 67-73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2013_1_a11/
%G ru
%F PFMT_2013_1_a11
F. E. Lomovtsev; D. A. Lyakhov. Weak solutions of hyperbolic even-order operator-differential equations with variable domains. Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 67-73. http://geodesic.mathdoc.fr/item/PFMT_2013_1_a11/

[1] F. E. Lomovtsev, “Granichnaya zadacha dlya differentsialnykh uravnenii chetnogo poryadka s peremennymi oblastyami opredeleniya operatornykh koeffitsientov”, Differents. uravneniya, 30:8 (1994), 1412–1425 | MR | Zbl

[2] J.-L. Lions, Equations differentielles operationnelles et problemes aux limites, Springer-Verlag, Berlin, 1961, 292 pp. | MR | Zbl

[3] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965, 798 pp. | MR | Zbl

[4] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967, 464 pp. | MR

[5] N. I. Yurchuk, “Granichnye zadachi dlya differentsialnykh uravnenii s zavisyaschimi ot parametra operatornymi koeffitsientami. I: Apriornye otsenki”, Differents. uravneniya, 12:9 (1976), 1645–1661 | MR | Zbl

[6] F. E. Lomovtsev, “O neobkhodimykh i dostatochnykh usloviyakh odnoznachnoi razreshimosti zadachi Koshi dlya giperbolicheskikh differentsialnykh uravnenii vtorogo poryadka s peremennoi oblastyu opredeleniya operatornykh koeffitsientov”, Differents. uravneniya, 28:5 (1992), 873–886 | MR | Zbl

[7] F. E. Lomovtsev, “Granichnye zadachi dlya polnykh kvazigiperbolicheskikh differentsialnykh uravnenii s peremennymi oblastyami opredeleniya gladkikh operatornykh koeffitsientov. I; II”, Differents. uravneniya, 41:2 (2005), 258–267 | MR | Zbl