Mots-clés : Coulomb potential, Salpeter equation.
@article{PFMT_2012_4_a0,
author = {V. V. Andreev and E. S. Chebotareva},
title = {The search of critical parameter values for semirelativistic coulomb problem},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {7--9},
year = {2012},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2012_4_a0/}
}
V. V. Andreev; E. S. Chebotareva. The search of critical parameter values for semirelativistic coulomb problem. Problemy fiziki, matematiki i tehniki, no. 4 (2012), pp. 7-9. http://geodesic.mathdoc.fr/item/PFMT_2012_4_a0/
[1] I. Herbst, “Spectral Theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$”, Commun. Math. Phys., 53 (1977), 285–294 | DOI | MR | Zbl
[2] W. Lucha, F. F. Schoberl, “Relativistic Coulomb problem: Energy levels at the critical coupling constant analytically”, Phys. Lett. B, 387 (1996), 573–576 | DOI
[3] I. M. Ryzhik, I. S. Gradshtein, Tablitsy integralov, summ, ryadov i proizvedenii, 4-e pererabotannoe, Gos. izd-vo fiz.-mat. literatury, M., 1963, 1110 pp. | MR
[4] L. P. Fulcher, Z. Chen, K. C. Yeong, “Energies of quark — anti-quark systems, the Cornell potential, and the spinless Salpeter equation”, Phys. Rev. D, 47 (1993), 4122–4132 | DOI
[5] A. Martin, S. M. Roy, “Semirelativistic stability and critical mass of a system of spinless bosons in gravitational interaction”, Phys. Lett. B, 233 (1989), 407–412 | DOI | MR