On the structure of the smallest element of the Lockett section of a $\pi$-soluble fitting fu
Problemy fiziki, matematiki i tehniki, no. 3 (2012), pp. 48-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let f be a conjugate $\lambda$-normally embedded $\pi$-soluble Fitting functor and let $f_*$ be the smallest element of the Lockett section of f with respect to strong containment. A generalized version of an open question of Beidleman-Brewster-Hauck is to give a description of $f_*$. In this paper such a description is presented.
Keywords: Lockett's operation, Lockett section, Fitting $\mathfrak{X}$-functor.
@article{PFMT_2012_3_a9,
     author = {E. A. Vit'ko},
     title = {On the structure of the smallest element of the {Lockett} section of a $\pi$-soluble fitting fu},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {48--57},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_3_a9/}
}
TY  - JOUR
AU  - E. A. Vit'ko
TI  - On the structure of the smallest element of the Lockett section of a $\pi$-soluble fitting fu
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 48
EP  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_3_a9/
LA  - ru
ID  - PFMT_2012_3_a9
ER  - 
%0 Journal Article
%A E. A. Vit'ko
%T On the structure of the smallest element of the Lockett section of a $\pi$-soluble fitting fu
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 48-57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_3_a9/
%G ru
%F PFMT_2012_3_a9
E. A. Vit'ko. On the structure of the smallest element of the Lockett section of a $\pi$-soluble fitting fu. Problemy fiziki, matematiki i tehniki, no. 3 (2012), pp. 48-57. http://geodesic.mathdoc.fr/item/PFMT_2012_3_a9/

[1] J. C. Beidleman, B. Brewster, P. Hauck, “Fitting funcntors in finite solvable groups, II”, Math. Proc. Camb. Phil. Soc., 101 (1987), 37–55 | DOI | MR | Zbl

[2] E. A. Vitko, N. T. Vorobev, “Fittingovy funktory i radikaly konechnykh grupp”, Sib. matem. zhurnal, 52:6 (2011), 1253–1263 | MR

[3] E. A. Vitko, “O naimenshikh i naibolshikh elementakh sektsii Loketta fittingova funktora”, Problemy fiziki, matematiki i tekhniki, 2012, no. 1 (10), 9–14

[4] J. C. Beidleman, M. P. Gallego, “Conjugate $\pi$-normally embedded fitting functors”, Rend. Sem. Math. Univ. Padova, 80 (1988), 65–82 | MR | Zbl

[5] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR

[6] P. A. Golberg, “Khollovskie $\theta$-bazy konechnykh grupp”, Izvestiya vysshikh uchebnykh zavedenii, 1961, no. 1 (20), 36–43 | MR

[7] V. G. Sementovskii, “O pronormalnykh podgruppakh konechnykh $\pi$-razreshimykh grupp”, Vesnik Vitsebskaga dzyarzhaŭnaga ŭniversiteta, 2000, no. 3, 55–59

[8] S. F. Kamornikov, M. V. Selkin, Podgruppovye funktory i klassy konechnykh grupp, Belarus. navuka, Minsk, 2003, 254 pp.

[9] J. C. Beidleman, B. Brewster, P. Hauck, “Fittingfunktoren in endlichen auflösbaren Gruppen, I”, Math. Z., 182 (1983), 359–384 | DOI | MR | Zbl

[10] F. P. Lockett, “The Fitting class $\mathfrak{F}^*$”, Math. Z., 137 (1974), 131–136 | DOI | MR | Zbl

[11] N. T. Vorobev, “O radikalnykh klassakh konechnykh grupp s usloviem Loketta”, Matematicheskie zametki, 43:2 (1988), 161–168 | MR