On spectral properties of weighted shift operators generated by linear mappings with perron’s conditions
Problemy fiziki, matematiki i tehniki, no. 3 (2012), pp. 43-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

Weighted shift operators $B$ in the space $L_2 (\mathbb{C}^m )$ generated by a linear mapping $A\colon\mathbb{C}^m \to \mathbb{C}^m$ are considered. A description of properties of $B - \lambda I$ for $\lambda$ belonging to spectrum $\sum(B)$ is given. In particular, the necessary and sufficient condition for $B - \lambda I$ to be one-sided invertible is obtained.
Keywords: weighted shift operators, spectrum, one-sided invertibility, invariant measure, decomposition of oriented graph.
@article{PFMT_2012_3_a8,
     author = {A. A. Ahmatova},
     title = {On spectral properties of weighted shift operators generated by linear mappings with perron{\textquoteright}s conditions},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {43--47},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_3_a8/}
}
TY  - JOUR
AU  - A. A. Ahmatova
TI  - On spectral properties of weighted shift operators generated by linear mappings with perron’s conditions
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 43
EP  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_3_a8/
LA  - ru
ID  - PFMT_2012_3_a8
ER  - 
%0 Journal Article
%A A. A. Ahmatova
%T On spectral properties of weighted shift operators generated by linear mappings with perron’s conditions
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 43-47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_3_a8/
%G ru
%F PFMT_2012_3_a8
A. A. Ahmatova. On spectral properties of weighted shift operators generated by linear mappings with perron’s conditions. Problemy fiziki, matematiki i tehniki, no. 3 (2012), pp. 43-47. http://geodesic.mathdoc.fr/item/PFMT_2012_3_a8/

[1] A. B. Antonevich, Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Universitetskoe, Minsk, 1988 | MR | Zbl

[2] A. Antonevich, A. Lebedev, Functional differential equations, v. I, $C^*$-theory, Longman Scientific Technical, Harlow, 1994 | MR | Zbl

[3] R. Mardiev, “Kriterii poluneterovosti odnogo klassa singulyarnykh integralnykh operatorov s nekarlemanovskim sdvigom”, Dokl. AN UzSSR, 2:2 (1985), 5–7 | MR | Zbl

[4] G. Belitskii, Yu. Lyubich, “On the normal solvability of cohomological equations on compact topological spaces”, Operator Theory: Advances and Applications, 103 (1998), 75–87 | MR | Zbl

[5] A. Yu. Karlovich, Yu. I. Karlovich, “One sided invertibility of binomial functional operators with a shift in rearrangement-invariant spaces”, Integral Equations Operator Theory, 42:2 (2002), 201–228 | DOI | MR | Zbl

[6] A. Antonevich, Yu. Makowska, “On spectral properties of weighted shift operators generated by mappings with saddle points”, Complex analysis and Operator theory, 2:2 (2008), 215–240 | DOI | MR | Zbl

[7] A. Antonevich, A. Buraczewski, “Dynamics of linear mapping and invariant measures on sphere”, Demonstratio Math., 29:4 (1996), 817–824 | MR