On maximal subgroups of finite groups
Problemy fiziki, matematiki i tehniki, no. 3 (2012), pp. 41-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1986 V.A. Vedernikov proved that if $M$ is a non-normal maximal subgroup of a finite soluble group $G$, then $M$ contains a normalizer of some Sylow subgroup of $G$. In the paper the following generalization of Vedernikov’s result is proved. Theorem. Let $G$ be a $\pi$-soluble finite group. Let $M$ be a non-normal maximal subgroup of $G$ such that $|G : M|$ is a power of a prime $p$ in $\pi$. Let H be a Hall subgroup in $M$ such that $p$ does not divide $|H|$, and either $|\pi(H) \cap \pi'|\le 1$ or $|M : H|$ is a $\pi$-number. If the core of $HM_G / M_G$ in $M / M_G$ is not equal to $1$, then $N_G(H)$ is contained in $M$. Here $M_G$ is the core of $M$ in $G$, i. e., the largest normal subgroup in $G$ contained in $M$; $\pi(H)$ is the set of prime divisors of $|H|$.
Mots-clés : $\pi$-soluble group
Keywords: maximal subgroup.
@article{PFMT_2012_3_a7,
     author = {N. M. Adarchenko},
     title = {On maximal subgroups of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {41--42},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_3_a7/}
}
TY  - JOUR
AU  - N. M. Adarchenko
TI  - On maximal subgroups of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 41
EP  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_3_a7/
LA  - ru
ID  - PFMT_2012_3_a7
ER  - 
%0 Journal Article
%A N. M. Adarchenko
%T On maximal subgroups of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 41-42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_3_a7/
%G ru
%F PFMT_2012_3_a7
N. M. Adarchenko. On maximal subgroups of finite groups. Problemy fiziki, matematiki i tehniki, no. 3 (2012), pp. 41-42. http://geodesic.mathdoc.fr/item/PFMT_2012_3_a7/

[1] M. Kholl, Teoriya grupp, Izd. inostr. literatury, M., 1962, 468 pp.

[2] V. A. Vedernikov, “O $\pi$-svoistvakh konechnykh grupp”, Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp, Nauka i tekhnika, Minsk, 1986, 13–19 | MR

[3] D. V. Gritsuk, V. S. Monakhov, On maximal subgroups of a finite solvable group, 5 May 2011, 5 pp., arXiv: 1105.1054v1[math.GR] | MR | Zbl

[4] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR | Zbl

[5] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR