Polarizable and energy properties of the vector paraxial gaussian light beams
Problemy fiziki, matematiki i tehniki, no. 3 (2012), pp. 19-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

Polarization and energy flux density of an electromagnetic field for the vector paraxial Gaussian light beams with the homogeneous and nonhomogeneous polarization of various types are discovered and explored. Some new types of the vector paraxial Gaussian light beams, for example, beams with spiral elliptic polarization are featured.
Keywords: paraxial beams, vector beams, light beams, Gaussian beams, polarizable properties, energy properties, nonhomogeneous polarization.
@article{PFMT_2012_3_a2,
     author = {S. S. Girgel},
     title = {Polarizable and energy properties of the vector paraxial gaussian light beams},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {19--24},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_3_a2/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Polarizable and energy properties of the vector paraxial gaussian light beams
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 19
EP  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_3_a2/
LA  - ru
ID  - PFMT_2012_3_a2
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Polarizable and energy properties of the vector paraxial gaussian light beams
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 19-24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_3_a2/
%G ru
%F PFMT_2012_3_a2
S. S. Girgel. Polarizable and energy properties of the vector paraxial gaussian light beams. Problemy fiziki, matematiki i tehniki, no. 3 (2012), pp. 19-24. http://geodesic.mathdoc.fr/item/PFMT_2012_3_a2/

[1] A. M. Goncharenko, Gaussovy puchki sveta, Nauka i tekhnika, Mn., 1977, 144 pp. | Zbl

[2] X. Kogelnik, T. Li, “Rezonatory i svetovye puchki lazerov”, TIIER, 54:10 (1966), 95–112

[3] Shimoda Koichi, “Vectorial analysis of the Gaussian beams of light”, J. Phys. Soc. Japan, 60:1 (1991), 141–144 | DOI | MR

[4] L. W. Davis, G. Patsakos, “TM and TE electromagnetic beams in free space”, Optics Letters, 8:1 (1981), 22–23 | DOI

[5] Kh. Khaus, Volny i polya v optoelektronike, per. s angl., Mir, M., 1988, 432 pp.

[6] F. Gori, “Polarization basis for vortex beams”, J. Opt. Soc. Am. A, 18:7 (2001), 1612–1617 | DOI | MR

[7] A. M. Belskii, T. M. Korneichik, A. P. Khapalyuk, Prostranstvennaya struktura lazernogo izlucheniya, Izd-vo BGU, M., 1982, 198 pp.

[8] S. S. Girgel, “Svoistva vektornykh paraksialnykh svetovykh puchkov. I: Odnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2011, no. 1 (6), 1–5

[9] S. S. Girgel, “Svoistva vektornykh paraksialnykh svetovykh puchkov. II: Neodnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2012, no. 2 (10), 1–5

[10] A. Yu. Ardashev, V. A. Kashin, G. V. Skrotskii, “Nekotorye svoistva uzkogo monokhromaticheskogo svetovogo puchka”, Izvestiya vuzov. Radiofizika, 11:12 (1968), 1848–1851

[11] M. Born, E. Volf, Osnovy optiki, Nauka, M., 1970, 587 pp.

[12] F. I. Fedorov, Optika anizotropnykh sred, Izd-vo AN BSSR, Mn., 1976, 380 pp.

[13] N. E. Kochin, Vektornoe ischislenie i nachala tenzornogo ischisleniya, Izd-vo AN SSSR, M., 1951, 426 pp. | MR

[14] A. Y. Bekshaev, M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities”, Opt. Communs., 271 (2007), 332–348 | DOI

[15] A. Bekshaev, K. Bliokh, M. Soskin, “Internal flows and energy circulation in light beams”, Journ. of Optics, 13:5 (2011), 053001, 32 pp. | DOI

[16] M. V. Berry, “Optical currents”, Journ. of Optics. A: Pure Appl. Opt., 11:9 (2009), 094001, 12 pp. | DOI