Finite groups with given systems of quasipermutable subgroups
Problemy fiziki, matematiki i tehniki, no. 3 (2012), pp. 74-77

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. A subgroup $A$ of $G$ is said to be quasipermutable in $G$ if A either covers or avoids every maximal pair $(K,H)$ of $G$. We study the finite groups with given systems of quasipermutable subgroups.
Keywords: finite group, (weakly) quasipermutable subgroup, generalized Fitting subgroup, $p$-nilpotent group, $\mathcal{U}$-hypercentre.
Mots-clés : maximal pair
@article{PFMT_2012_3_a12,
     author = {V. A. Kovaleva and Zh. Xiaoyu},
     title = {Finite groups with given systems of quasipermutable subgroups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {74--77},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_3_a12/}
}
TY  - JOUR
AU  - V. A. Kovaleva
AU  - Zh. Xiaoyu
TI  - Finite groups with given systems of quasipermutable subgroups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 74
EP  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_3_a12/
LA  - en
ID  - PFMT_2012_3_a12
ER  - 
%0 Journal Article
%A V. A. Kovaleva
%A Zh. Xiaoyu
%T Finite groups with given systems of quasipermutable subgroups
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 74-77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_3_a12/
%G en
%F PFMT_2012_3_a12
V. A. Kovaleva; Zh. Xiaoyu. Finite groups with given systems of quasipermutable subgroups. Problemy fiziki, matematiki i tehniki, no. 3 (2012), pp. 74-77. http://geodesic.mathdoc.fr/item/PFMT_2012_3_a12/