Constructing of Abel equations quivalented to the equation of the form $\dot{x}=A(t)(\xi_{0}+\xi_{1}x+\xi_{2}x^2+\xi_{3}x^3)$
Problemy fiziki, matematiki i tehniki, no. 2 (2012), pp. 55-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

The sufficient conditions for coinsidering Mironenko reflecting functions of Abel equations $\dot{x}= a_0 (t) + a_1 (t)x + a_2 (t)x^2 + a_3 (t)x^3$ and $\dot{x}=A(t)(\xi_{0}+\xi_{1}x+\xi_{2}x^2+\xi_{3}x^3)$ where $\xi_i$ are constants are established. Obtained results are illustrated by examples.
Mots-clés : Abel equation, polynomial perturbations.
Keywords: reflecting function, equivalence of differential equations
@article{PFMT_2012_2_a8,
     author = {V. A. Belsky and V. I. Mironenko},
     title = {Constructing of {Abel} equations quivalented to the equation of the form $\dot{x}=A(t)(\xi_{0}+\xi_{1}x+\xi_{2}x^2+\xi_{3}x^3)$},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {55--61},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_2_a8/}
}
TY  - JOUR
AU  - V. A. Belsky
AU  - V. I. Mironenko
TI  - Constructing of Abel equations quivalented to the equation of the form $\dot{x}=A(t)(\xi_{0}+\xi_{1}x+\xi_{2}x^2+\xi_{3}x^3)$
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 55
EP  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_2_a8/
LA  - ru
ID  - PFMT_2012_2_a8
ER  - 
%0 Journal Article
%A V. A. Belsky
%A V. I. Mironenko
%T Constructing of Abel equations quivalented to the equation of the form $\dot{x}=A(t)(\xi_{0}+\xi_{1}x+\xi_{2}x^2+\xi_{3}x^3)$
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 55-61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_2_a8/
%G ru
%F PFMT_2012_2_a8
V. A. Belsky; V. I. Mironenko. Constructing of Abel equations quivalented to the equation of the form $\dot{x}=A(t)(\xi_{0}+\xi_{1}x+\xi_{2}x^2+\xi_{3}x^3)$. Problemy fiziki, matematiki i tehniki, no. 2 (2012), pp. 55-61. http://geodesic.mathdoc.fr/item/PFMT_2012_2_a8/

[1] V. A. Belskii, “Uravneniya Rikkati s odinakovymi otrazhayuschimi funktsiyami”, Izvestiya Nats. Akad. Nauk Belarusi, ser. fiz.-mat. nauk, 2007, no. 4, 22–27 | MR

[2] V. A. Belskii, “O postroenii uravnenii, ekvivalentnykh uravneniyu Rikkati v smysle sovpadeniya otrazhayuschikh funktsii”, Izvestiya Nats. Akad. Nauk Belarusi, ser. fiz.-mat. nauk, 2008, no. 2, 35–41 | MR

[3] V. I. Mironenko, “O metode, pozvolyayuschem nakhodit nachalnye dannye periodicheskikh reshenii differentsialnykh sistem i sravnivat otobrazheniya za period”, Differentsialnye uravneniya, 14:11 (1980), 1985–1994 | MR

[4] V. I. Mironenko, Otrazhayuschaya funktsiya i issledovanie mnogomernykh differentsialnykh sistem, UO GGU im. F. Skoriny, Gomel, 2004, 196 pp. | MR

[5] V. I. Mironenko, Otrazhayuschaya funktsiya i periodicheskie resheniya differentsialnykh uravnenii, Universitetskoe, Minsk, 1986, 76 pp. | MR | Zbl

[6] Reflecting function, , 2010 (Date of access: 16.05.2011) http://www.reflecting-function.narod.ru

[7] V. A. Belskii, V. I. Mironenko, “O polinomialnykh vozmuscheniyakh uravneniya Abelya, ne izmenyayuschikh otrazhayuschei funktsii”, Problemy fiziki, matematiki i tekhniki, 2011, no. 4 (9), 79–85

[8] M. A. Krasnoselskii, Operator sdviga po traektoriyam obyknovennykh differentsialnykh uravnenii, Nauka, M., 1966, 332 pp. | MR

[9] V. V. Mironenko, “Vozmuscheniya differentsialnykh sistem, ne menyayuschie vremennykh simmetrii”, Differentsialnye uravneniya, 40:10 (2004), 1325–1332 | MR | Zbl