Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2012_2_a5, author = {E. M. Ovsiyuk and O. V. Veko and V. M. Red'kov}, title = {Mueller semigroups of the rank 1 and 2}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {34--40}, publisher = {mathdoc}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2012_2_a5/} }
E. M. Ovsiyuk; O. V. Veko; V. M. Red'kov. Mueller semigroups of the rank 1 and 2. Problemy fiziki, matematiki i tehniki, no. 2 (2012), pp. 34-40. http://geodesic.mathdoc.fr/item/PFMT_2012_2_a5/
[1] V. N. Snopko, Polyarizatsionnye kharakteristiki opticheskogo izlucheniya, Nauka i tekhnika, Minsk, 1992, 336 pp.
[2] F. I. Fedorov, Gruppa Lorentsa, Nauka, M., 1979, 384 pp. | MR
[3] A. A. Bogush i dr., “Bikvaterniony i matritsy Myullera”, Doklady NAN Belarusi, 51:5 (2007), 71–76 | Zbl
[4] V. A. Dlugunovich, Yu. A. Kurochkin, “Vektornaya parametrizatsiya preobrazovannoi gruppy Lorentsa i polyarnoe razlozhenie matrits Myullera”, Optika i spektroskopiya, 107:2 (2009), 312–317
[5] V. A. Dlugunovich, Yu. A. Kurochkin, “The Polar Decomposition And Vector Parametrization Of The Mueller Matrices”, AIP Conference Proceedings, 1205, 2010, 65–71 | DOI
[6] V. M. Redkov, “Spinornyi formalizm grupppy Lorentsa i polyarizovannyi svet”, Vestnik Brestskogo universiteta. Seriya 4. Fizika, matematika, 2010, no. 1, 37–45 | MR
[7] V. M. Red'kov, “Lorentz group and polarization of the light”, Advances in Applied Clifford Algebras, 21 (2011), 203–220 | DOI | MR
[8] V. M. Redkov, E. M. Ovsiyuk, “O nakhozhdenii matritsy Myullera opticheskogo elementa po rezultatam polyarizatsionnykh eksperimentov, teoretiko-gruppovoi analiz”, Optika neodnorodnykh struktur-2011, Materialy III Mezhdunarodnoi nauchno-prakticheskoi konferentsii (g. Mogilev, 16–17 fevralya 2011 g.), ed. V. A. Karpenko, UO «MGU im. A. A. Kuleshova», Mogilev, 2011, 32–35
[9] A. A. Bogush, V. M. Redkov, “O chetyrekhmernoi vektornoi parametrizatsii gruppy i nekotorykh ee podgrupp”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2006, no. 3, 57–63 | MR
[10] A. A. Bogush, V. M. Red'kov, “On Unique parametrization of the linear group $GL(4,C)$ and its subgroups by using the Dirac algebra basis”, Nonlinear Phenomena in Complex Systems, 11:1 (2008), 1–24 | MR
[11] A. A. Bogush, N. G. Tokarevskaya, V. M. Redkov, “O vektor-parametrakh 4-mernykh matrits obratnykh preobrazovanii v teorii gruppy $GL(4,C)$”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2008, no. 3, 64–69 | MR
[12] V. M. Red'kov, A. A. Bogush, N.G. Tokarevskaya, “On Parametrization of the Linear $GL(4,C)$ and Unitary $SU(4)$ Groups in Terms of Dirac Matrices”, SIGMA, 4 (2008), 021, 46 pp. | MR