Mueller semigroups of the rank 1 and 2
Problemy fiziki, matematiki i tehniki, no. 2 (2012), pp. 34-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

Several simple sets of degenerated Mueller matrices of the rank 1 and 2 having the structure of semigroups are constructed explicitly with the use of a linear expansion of real $4 \times 4 $-matrices in terms of Dirac matrices. The properties important in polarization optics are considered
Mots-clés : Mueller matrix
Keywords: polarization optics, semigroup.
@article{PFMT_2012_2_a5,
     author = {E. M. Ovsiyuk and O. V. Veko and V. M. Red'kov},
     title = {Mueller semigroups of the rank 1 and 2},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {34--40},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_2_a5/}
}
TY  - JOUR
AU  - E. M. Ovsiyuk
AU  - O. V. Veko
AU  - V. M. Red'kov
TI  - Mueller semigroups of the rank 1 and 2
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 34
EP  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_2_a5/
LA  - ru
ID  - PFMT_2012_2_a5
ER  - 
%0 Journal Article
%A E. M. Ovsiyuk
%A O. V. Veko
%A V. M. Red'kov
%T Mueller semigroups of the rank 1 and 2
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 34-40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_2_a5/
%G ru
%F PFMT_2012_2_a5
E. M. Ovsiyuk; O. V. Veko; V. M. Red'kov. Mueller semigroups of the rank 1 and 2. Problemy fiziki, matematiki i tehniki, no. 2 (2012), pp. 34-40. http://geodesic.mathdoc.fr/item/PFMT_2012_2_a5/

[1] V. N. Snopko, Polyarizatsionnye kharakteristiki opticheskogo izlucheniya, Nauka i tekhnika, Minsk, 1992, 336 pp.

[2] F. I. Fedorov, Gruppa Lorentsa, Nauka, M., 1979, 384 pp. | MR

[3] A. A. Bogush i dr., “Bikvaterniony i matritsy Myullera”, Doklady NAN Belarusi, 51:5 (2007), 71–76 | Zbl

[4] V. A. Dlugunovich, Yu. A. Kurochkin, “Vektornaya parametrizatsiya preobrazovannoi gruppy Lorentsa i polyarnoe razlozhenie matrits Myullera”, Optika i spektroskopiya, 107:2 (2009), 312–317

[5] V. A. Dlugunovich, Yu. A. Kurochkin, “The Polar Decomposition And Vector Parametrization Of The Mueller Matrices”, AIP Conference Proceedings, 1205, 2010, 65–71 | DOI

[6] V. M. Redkov, “Spinornyi formalizm grupppy Lorentsa i polyarizovannyi svet”, Vestnik Brestskogo universiteta. Seriya 4. Fizika, matematika, 2010, no. 1, 37–45 | MR

[7] V. M. Red'kov, “Lorentz group and polarization of the light”, Advances in Applied Clifford Algebras, 21 (2011), 203–220 | DOI | MR

[8] V. M. Redkov, E. M. Ovsiyuk, “O nakhozhdenii matritsy Myullera opticheskogo elementa po rezultatam polyarizatsionnykh eksperimentov, teoretiko-gruppovoi analiz”, Optika neodnorodnykh struktur-2011, Materialy III Mezhdunarodnoi nauchno-prakticheskoi konferentsii (g. Mogilev, 16–17 fevralya 2011 g.), ed. V. A. Karpenko, UO «MGU im. A. A. Kuleshova», Mogilev, 2011, 32–35

[9] A. A. Bogush, V. M. Redkov, “O chetyrekhmernoi vektornoi parametrizatsii gruppy i nekotorykh ee podgrupp”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2006, no. 3, 57–63 | MR

[10] A. A. Bogush, V. M. Red'kov, “On Unique parametrization of the linear group $GL(4,C)$ and its subgroups by using the Dirac algebra basis”, Nonlinear Phenomena in Complex Systems, 11:1 (2008), 1–24 | MR

[11] A. A. Bogush, N. G. Tokarevskaya, V. M. Redkov, “O vektor-parametrakh 4-mernykh matrits obratnykh preobrazovanii v teorii gruppy $GL(4,C)$”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2008, no. 3, 64–69 | MR

[12] V. M. Red'kov, A. A. Bogush, N.G. Tokarevskaya, “On Parametrization of the Linear $GL(4,C)$ and Unitary $SU(4)$ Groups in Terms of Dirac Matrices”, SIGMA, 4 (2008), 021, 46 pp. | MR