The field of gravitation of the spherical surface in relativistic Brillouin gravistatics
Problemy fiziki, matematiki i tehniki, no. 2 (2012), pp. 18-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The relations determining the intensity of static gravitational field of the massive spherical surface in relativistic Brillouin gravitational statics have been fixed. It has been shown that the value of intensity of the field on the surface itself is half as high as its value near external surface.
Keywords: relativistic theory of gravitation, boundary problem, nonlinear gravistatics.
@article{PFMT_2012_2_a2,
     author = {N. A. Akhramenko and L. M. Bulavko and A. N. Serdyukov},
     title = {The field of gravitation of the spherical surface in relativistic {Brillouin} gravistatics},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {18--20},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_2_a2/}
}
TY  - JOUR
AU  - N. A. Akhramenko
AU  - L. M. Bulavko
AU  - A. N. Serdyukov
TI  - The field of gravitation of the spherical surface in relativistic Brillouin gravistatics
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 18
EP  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_2_a2/
LA  - ru
ID  - PFMT_2012_2_a2
ER  - 
%0 Journal Article
%A N. A. Akhramenko
%A L. M. Bulavko
%A A. N. Serdyukov
%T The field of gravitation of the spherical surface in relativistic Brillouin gravistatics
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 18-20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_2_a2/
%G ru
%F PFMT_2012_2_a2
N. A. Akhramenko; L. M. Bulavko; A. N. Serdyukov. The field of gravitation of the spherical surface in relativistic Brillouin gravistatics. Problemy fiziki, matematiki i tehniki, no. 2 (2012), pp. 18-20. http://geodesic.mathdoc.fr/item/PFMT_2012_2_a2/

[1] L. Brillyuen, Novyi vzglyad na teoriyu otnositelnosti, Mir, M., 1972, 142 pp.

[2] A. N. Serdyukov, “Minimalnaya model tyagoteniya v ramkakh standartnykh ogranichenii teorii klassicheskikh polei”, Pisma v EChAYa, 6:3 (152) (2009), 312–331

[3] A. N. Serdyukov, Kalibrovochnaya teoriya skalyarnogo gravitatsionnogo polya, Izd-vo Gomelskogo gos. un-ta, Gomel, 2005, 257 pp.

[4] N. A. Akhramenko, L. M. Bulavko, “K opredeleniyu elektricheskogo polya ravnomerno zaryazhennoi sfery”, Vestnik BGU. Seriya 1, 2005, no. 3, 40–43