Optimal control problem of a thermal process in the rod with heat exchange on both ends
Problemy fiziki, matematiki i tehniki, no. 2 (2012), pp. 81-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

An optimal control problem of a thermal process in the rod with heat exchange on both ends is considered. The method of its approximate solution by data to optimal control problem of large-scale differential equations system is offered. The algorithm of operation of the optimal regulator forming in real time current values of an optimal feedback is described.
Keywords: thermal process, optimal control problem, optimal feedback, optimal regulator.
@article{PFMT_2012_2_a13,
     author = {D. S. Kuzmenkov},
     title = {Optimal control problem of a thermal process in the rod with heat exchange on both ends},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {81--87},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_2_a13/}
}
TY  - JOUR
AU  - D. S. Kuzmenkov
TI  - Optimal control problem of a thermal process in the rod with heat exchange on both ends
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 81
EP  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_2_a13/
LA  - ru
ID  - PFMT_2012_2_a13
ER  - 
%0 Journal Article
%A D. S. Kuzmenkov
%T Optimal control problem of a thermal process in the rod with heat exchange on both ends
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 81-87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_2_a13/
%G ru
%F PFMT_2012_2_a13
D. S. Kuzmenkov. Optimal control problem of a thermal process in the rod with heat exchange on both ends. Problemy fiziki, matematiki i tehniki, no. 2 (2012), pp. 81-87. http://geodesic.mathdoc.fr/item/PFMT_2012_2_a13/

[1] A. I. Egorov, Optimalnoe upravlenie teplovymi i diffuzionnymi protsessami, Nauka, M., 1978, 468 pp. | MR

[2] Zh. L. Lions, Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp. | MR

[3] Adam Kowalewski, “Optimal control of distributed parabolic systems with multiple time delays given in the integral form”, J. Math. Contr. and Inf., 22:2 (2005), 149–170 | DOI | MR | Zbl

[4] A. G. Butkovskii, Metody optimalnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1975, 568 pp.

[5] F. P. Vasilev, A. Z. Ishmukhametov, M. M. Potapov, Obobschennyi metod momentov v zadachakh optimalnogo upravleniya, Izd-vo MGU, M., 1989, 143 pp. | MR

[6] V. I. Krylov, V. V. Bobkov, P. I. Monastyrnyi, Nachala teorii vychislitelnykh metodov. Uravneniya v chastnykh proizvodnykh, Nauka i tekhnika, Mn., 1986, 311 pp. | MR

[7] R. Gabasov, F. M. Kirillova, A. I. Tyatyushkin, Konstruktivnye metody optimizatsii, v 5 ch., v. 1, Lineinye zadachi, Universitetskoe, Minsk, 1984, 213 pp. | MR

[8] R. Gabasov, F. M. Kirillova, D. S. Kuzmenkov, “Optimalnoe upravlenie teplovym protsessom”, Dokl. NAN Belarusi, 53:1 (2009), 5–9 | MR

[9] D. S. Kuzmenkov, “Rasparallelivanie vychislenii pri optimalnom upravlenii nagrevom sterzhnya”, Izv. Gomelskogo gos. un-ta im. F. Skoriny. Estestvennye nauki, 2008, no. 5 (50), ch. 1, 61–64

[10] R. Gabasov, F. M. Kirillova, “Printsipy optimalnogo upravleniya”, Dokl. NAN Belarusi, 48:1 (2004), 15–18 | MR | Zbl