The reflecting function of one two dimensional differential system
Problemy fiziki, matematiki i tehniki, no. 2 (2012), pp. 65-67
Cet article a éte moissonné depuis la source Math-Net.Ru
It was established , that if the first component of the Mironenko reflecting function of the system $\dot{x} = a_0 (t, x) + ya_1 (t, x)$, $\dot{y} = b_0 (t, x) + yb_1 (t, x) + y b_2 (t, x)$ is linear with respect to $x$, and independent of $y$ then the second component of the reflecting function is linear with respect to $y$.
Keywords:
differential system, reflecting function, periodic solutions.
@article{PFMT_2012_2_a10,
author = {P. P. Veresovich},
title = {The reflecting function of one two dimensional differential system},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {65--67},
year = {2012},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2012_2_a10/}
}
P. P. Veresovich. The reflecting function of one two dimensional differential system. Problemy fiziki, matematiki i tehniki, no. 2 (2012), pp. 65-67. http://geodesic.mathdoc.fr/item/PFMT_2012_2_a10/
[1] N. P. Erugin, Kniga dlya chteniya po obschemu kursu differentsialnykh uravnenii, «Nauka i tekhnika», Mn., 1979, 744 pp. | MR | Zbl
[2] V. I. Arnold, Obyknovennye differentsialnye uravneniya, Nauka, M., 272 pp. | MR
[3] V. I. Mironenko, “Otrazhayuschaya funktsiya i klassifikatsiya periodicheskikh differentsialnykh sistem”, Differents. uravneniya, KhKh:9 (1984), 1635–1638 | MR | Zbl
[4] V. I. Mironenko, Otrazhayuschaya funktsiya i periodicheskie resheniya differentsialnykh uravnenii, Izd-vo «Universitetskoe», Minsk, 1986, 76 pp. | MR | Zbl
[5] V. I. Mironenko, Otrazhayuschaya funktsiya i issledovanie mnogomernykh differentsialnykh sistem, Min-vo obrazovaniya RB, UO «GGU im. F. Skoriny», Gomel, 2004, 196 pp. | MR