The reflecting function of one two dimensional differential system
Problemy fiziki, matematiki i tehniki, no. 2 (2012), pp. 65-67

Voir la notice de l'article provenant de la source Math-Net.Ru

It was established , that if the first component of the Mironenko reflecting function of the system $\dot{x} = a_0 (t, x) + ya_1 (t, x)$, $\dot{y} = b_0 (t, x) + yb_1 (t, x) + y b_2 (t, x)$ is linear with respect to $x$, and independent of $y$ then the second component of the reflecting function is linear with respect to $y$.
Keywords: differential system, reflecting function, periodic solutions.
@article{PFMT_2012_2_a10,
     author = {P. P. Veresovich},
     title = {The reflecting function of one two dimensional differential system},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {65--67},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_2_a10/}
}
TY  - JOUR
AU  - P. P. Veresovich
TI  - The reflecting function of one two dimensional differential system
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 65
EP  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_2_a10/
LA  - ru
ID  - PFMT_2012_2_a10
ER  - 
%0 Journal Article
%A P. P. Veresovich
%T The reflecting function of one two dimensional differential system
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 65-67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_2_a10/
%G ru
%F PFMT_2012_2_a10
P. P. Veresovich. The reflecting function of one two dimensional differential system. Problemy fiziki, matematiki i tehniki, no. 2 (2012), pp. 65-67. http://geodesic.mathdoc.fr/item/PFMT_2012_2_a10/