On one property of the product of non-identity formations
Problemy fiziki, matematiki i tehniki, no. 1 (2012), pp. 101-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

All groups considered are finite. The product $\mathfrak{MH}$ of the formations $\mathfrak{M}$ and $\mathfrak{H}$ is the class $\{G \mid G^{\mathfrak{H}}\in\mathfrak{M}\}$. Let $\mathfrak{MH} \subseteq \mathfrak{F}$, where $\mathfrak{F}$ is a hereditary one-generated $\omega$-saturated formation and $\mathfrak{M}$, $\mathfrak{H}$ be two non-identity formations. Suppose that $\mathfrak{MH}$ is a solubly $\omega$-saturated formation. If $\mathfrak{H} \ne \mathfrak{MH}$, then $\mathfrak{M} \subseteq \mathfrak{N}_{\omega}\mathfrak{N}$.
Keywords: one-generated hereditary $\omega$-saturated formation, product of some formations, minimal $\omega$-local satellite.
@article{PFMT_2012_1_a18,
     author = {V. M. Sel'kin},
     title = {On one property of the product of non-identity formations},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {101--104},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_1_a18/}
}
TY  - JOUR
AU  - V. M. Sel'kin
TI  - On one property of the product of non-identity formations
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 101
EP  - 104
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_1_a18/
LA  - ru
ID  - PFMT_2012_1_a18
ER  - 
%0 Journal Article
%A V. M. Sel'kin
%T On one property of the product of non-identity formations
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 101-104
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_1_a18/
%G ru
%F PFMT_2012_1_a18
V. M. Sel'kin. On one property of the product of non-identity formations. Problemy fiziki, matematiki i tehniki, no. 1 (2012), pp. 101-104. http://geodesic.mathdoc.fr/item/PFMT_2012_1_a18/

[1] L. A. Shemetkov, A. N. Skiba, “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Matematicheskie trudy, 2:2 (1999), 114–147 | MR | Zbl

[2] A. N. Skiba, L. A. Shemetkov, “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Ukrainskii mat. zhurnal, 52:6 (2000), 783–797 | MR | Zbl

[3] A. Ballester-Bolinches, L. A. Shemetkov, “On lattices of $p$-local formations of finite group”, Math. Nachr., 186 (1997), 57–65 | DOI | MR | Zbl

[4] L. A. Shemetkov, “On partially saturated formations and residuals of finete groups”, Comminication in algebra, 29:9 (2001), 4125–4137 | DOI | MR | Zbl

[5] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989, 253 pp. | MR

[6] W. Go, V. M. Selkin, K. P. Sham, “Factorization theory of one-generated Bear $\omega$-local formations”, Communications in Algebra, 35 (2007), 2901–2931 | DOI | MR

[7] V. M. Sel'kin, One-generated formations and their factorizations, Preprint No 24, GGU im. F. Skoriny, Gomel, 2002, 13 pp.

[8] A. N. Skiba, Algebra formatsii, Belaruskaya navuka, Minsk, 1997, 240 pp. | MR | Zbl

[9] K. Doerk, T. Hawkes, Finite soluble group, Walter de Gruyter, Berlin–New York, 1992, 889 pp. | MR