Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2012_1_a18, author = {V. M. Sel'kin}, title = {On one property of the product of non-identity formations}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {101--104}, publisher = {mathdoc}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2012_1_a18/} }
V. M. Sel'kin. On one property of the product of non-identity formations. Problemy fiziki, matematiki i tehniki, no. 1 (2012), pp. 101-104. http://geodesic.mathdoc.fr/item/PFMT_2012_1_a18/
[1] L. A. Shemetkov, A. N. Skiba, “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Matematicheskie trudy, 2:2 (1999), 114–147 | MR | Zbl
[2] A. N. Skiba, L. A. Shemetkov, “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Ukrainskii mat. zhurnal, 52:6 (2000), 783–797 | MR | Zbl
[3] A. Ballester-Bolinches, L. A. Shemetkov, “On lattices of $p$-local formations of finite group”, Math. Nachr., 186 (1997), 57–65 | DOI | MR | Zbl
[4] L. A. Shemetkov, “On partially saturated formations and residuals of finete groups”, Comminication in algebra, 29:9 (2001), 4125–4137 | DOI | MR | Zbl
[5] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989, 253 pp. | MR
[6] W. Go, V. M. Selkin, K. P. Sham, “Factorization theory of one-generated Bear $\omega$-local formations”, Communications in Algebra, 35 (2007), 2901–2931 | DOI | MR
[7] V. M. Sel'kin, One-generated formations and their factorizations, Preprint No 24, GGU im. F. Skoriny, Gomel, 2002, 13 pp.
[8] A. N. Skiba, Algebra formatsii, Belaruskaya navuka, Minsk, 1997, 240 pp. | MR | Zbl
[9] K. Doerk, T. Hawkes, Finite soluble group, Walter de Gruyter, Berlin–New York, 1992, 889 pp. | MR