On the solvability of some finite primitive groups
Problemy fiziki, matematiki i tehniki, no. 1 (2012), pp. 87-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a subgroup of a finite group $G$ and $\operatorname{Core}_{G}M$ is the largest normal subgroup of $G$ contained in $M$. We determine the structure of the finite group $G$ if $G$ possesses a maximal subgroup $M$ with $\operatorname{Core}_{G}M = 1$ and all maximal subgroups $H$ of $G$ with $\operatorname{Core}_{G}H = 1$ satisfy certain properties.
Keywords: finite group, maximal subgroup.
Mots-clés : solvable group
@article{PFMT_2012_1_a14,
     author = {I. V. Lemeshev and V. S. Monakhov},
     title = {On the solvability of some finite primitive groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {87--91},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_1_a14/}
}
TY  - JOUR
AU  - I. V. Lemeshev
AU  - V. S. Monakhov
TI  - On the solvability of some finite primitive groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 87
EP  - 91
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_1_a14/
LA  - ru
ID  - PFMT_2012_1_a14
ER  - 
%0 Journal Article
%A I. V. Lemeshev
%A V. S. Monakhov
%T On the solvability of some finite primitive groups
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 87-91
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_1_a14/
%G ru
%F PFMT_2012_1_a14
I. V. Lemeshev; V. S. Monakhov. On the solvability of some finite primitive groups. Problemy fiziki, matematiki i tehniki, no. 1 (2012), pp. 87-91. http://geodesic.mathdoc.fr/item/PFMT_2012_1_a14/

[1] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006, 207 pp.

[2] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR | Zbl

[3] W. Gaschutz, Lectures of subgroups of Sylow type in finite soluble groups, Notes on pure mathematics, 11, Australian National University, Canberra, 1979, 100 pp. | MR

[4] R. Baer, “Classes of finite groups and their properties”, Illinois J. Math., 1 (1957), 115–187 | MR | Zbl

[5] M. Asaad, “On the solvability of finite groups”, Commun. algebra, 37 (2009), 719–723 | DOI | MR | Zbl

[6] S. M. Evtukhova, V. S. Monakhov, “O konechnykh gruppakh so sverkhrazreshimymi kofaktorami podgrupp”, Izvestiya NAN Belarusi. Ser. fiz.-mat. nauk, 2008, no. 4, 53–57 | MR

[7] Ph. Hall, “Complemented group”, J. London Math. Soc., 12 (1937), 201–204 | DOI | MR

[8] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967, 793 pp. | MR | Zbl

[9] B. Huppert, N. Blackburn, Finite groups, v. III, Springer-Verlag, Berlin–Heidelberg–New York, 1982