On the solvability of some finite primitive groups
Problemy fiziki, matematiki i tehniki, no. 1 (2012), pp. 87-91

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a subgroup of a finite group $G$ and $\operatorname{Core}_{G}M$ is the largest normal subgroup of $G$ contained in $M$. We determine the structure of the finite group $G$ if $G$ possesses a maximal subgroup $M$ with $\operatorname{Core}_{G}M = 1$ and all maximal subgroups $H$ of $G$ with $\operatorname{Core}_{G}H = 1$ satisfy certain properties.
Keywords: finite group, maximal subgroup.
Mots-clés : solvable group
@article{PFMT_2012_1_a14,
     author = {I. V. Lemeshev and V. S. Monakhov},
     title = {On the solvability of some finite primitive groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {87--91},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_1_a14/}
}
TY  - JOUR
AU  - I. V. Lemeshev
AU  - V. S. Monakhov
TI  - On the solvability of some finite primitive groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 87
EP  - 91
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_1_a14/
LA  - ru
ID  - PFMT_2012_1_a14
ER  - 
%0 Journal Article
%A I. V. Lemeshev
%A V. S. Monakhov
%T On the solvability of some finite primitive groups
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 87-91
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_1_a14/
%G ru
%F PFMT_2012_1_a14
I. V. Lemeshev; V. S. Monakhov. On the solvability of some finite primitive groups. Problemy fiziki, matematiki i tehniki, no. 1 (2012), pp. 87-91. http://geodesic.mathdoc.fr/item/PFMT_2012_1_a14/