On modules over group rings of locally finite groups
Problemy fiziki, matematiki i tehniki, no. 4 (2011), pp. 100-105

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be an $\mathrm{R}G$-module, where $\mathbf{R}$ is a commutative ring with the unit, $A/C_A(G)$ is not an artinian $\mathbf{R}$-module, $C_G(A) = 1$ and $G$ is a locally finite group. Let $\mathfrak{L}_{nad}(G)$ be a system of all subgroups $H \le G$ such that quotient modules $A/C_A(H)$ are not artinian $\mathbf{R}$-modules. The author studies $\mathbf{R}G$-module $A$ such that $\mathfrak{L}_{nad}(G)$ satisfies either weak minimal condition or weak maximal condition as an ordered set. The properties of the locally finite group $G$ with these conditions are described. Some properties of a locally soluble periodic group $G$ under consideration are obtained if $\mathbf{R}$ is a dedekind ring.
Keywords: an artinian $\mathbf{R}$-module, a group ring, a locally finite group.
@article{PFMT_2011_4_a18,
     author = {O. Yu. Dashkova},
     title = {On modules over group rings of locally finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {100--105},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_4_a18/}
}
TY  - JOUR
AU  - O. Yu. Dashkova
TI  - On modules over group rings of locally finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 100
EP  - 105
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_4_a18/
LA  - ru
ID  - PFMT_2011_4_a18
ER  - 
%0 Journal Article
%A O. Yu. Dashkova
%T On modules over group rings of locally finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 100-105
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_4_a18/
%G ru
%F PFMT_2011_4_a18
O. Yu. Dashkova. On modules over group rings of locally finite groups. Problemy fiziki, matematiki i tehniki, no. 4 (2011), pp. 100-105. http://geodesic.mathdoc.fr/item/PFMT_2011_4_a18/