Transformations of the Pauli--G\"ursey type in $SU(3)$-model
Problemy fiziki, matematiki i tehniki, no. 4 (2011), pp. 12-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the group $SU(3,3)$ is the complete continuous group of internal symmetry of the Lagrangian formulation of the theory of the massless Dirac fermion with three internal degrees of freedom. The color symmetry group $SU(3)$ can be considered as a compact subgroup of the latter.
Mots-clés : transformations, group
Keywords: internal symmetry, Dirac field, generators, invariance.
@article{PFMT_2011_4_a1,
     author = {P. P. Andrusevich and V. A. Pletyukhov and V. I. Strazhev},
     title = {Transformations of the {Pauli--G\"ursey} type in $SU(3)$-model},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {12--15},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_4_a1/}
}
TY  - JOUR
AU  - P. P. Andrusevich
AU  - V. A. Pletyukhov
AU  - V. I. Strazhev
TI  - Transformations of the Pauli--G\"ursey type in $SU(3)$-model
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 12
EP  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_4_a1/
LA  - ru
ID  - PFMT_2011_4_a1
ER  - 
%0 Journal Article
%A P. P. Andrusevich
%A V. A. Pletyukhov
%A V. I. Strazhev
%T Transformations of the Pauli--G\"ursey type in $SU(3)$-model
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 12-15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_4_a1/
%G ru
%F PFMT_2011_4_a1
P. P. Andrusevich; V. A. Pletyukhov; V. I. Strazhev. Transformations of the Pauli--G\"ursey type in $SU(3)$-model. Problemy fiziki, matematiki i tehniki, no. 4 (2011), pp. 12-15. http://geodesic.mathdoc.fr/item/PFMT_2011_4_a1/

[1] V. I. Strazhev, P. L. Shkolnikov, “O gruppe zaryadovoi simmetrii relyativistskikh volnovykh uravnenii”, Izvestiya vuzov. Fizika, 1981, no. 11, 115–117

[2] D. L. Pursey, J. F. Plebanski, “Symmetries of the Dirac equation”, Phys. Rev., 29 (1984), 1848–1850 | DOI

[3] Fuschich V. I., Nikitin A. G., Simmetriya uravnenii kvantovoi mekhaniki, Nauka, M., 1990, 400 pp. | MR

[4] W. Pauli, “On the conservation of the lepton charge”, Nuovo Cimento, 6 (1957), 204–214 | DOI | MR

[5] F. Gürsey, “Connection of charge independence and barion number conservation with the Pauli transformation”, Nuovo Cimento, 8 (1957), 411–415

[6] N. Kh. Ibragimov, “Ob invariantnosti uravnenii Diraka”, DAN SSSR, 185 (1969), 1226–1228 | MR

[7] V. A. Pletyukhov, V. I. Strazhev, P. P. Andrusevich, “Internal symmetry of the three Dirac fields”, NDCS, 14:1 (2011), 96–101 | MR | Zbl

[8] V. A. Pletyukhov, V. I. Strazhev, P. P. Andrusevich, “Vnutrennie simmetrii bezmassovykh dirakovskikh polei”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2011, no. 2, 13–17 | MR

[9] P. P. Andrusevich, V. A. Pletyukhov, V. I. Strazhev, “O vnutrennei simmetrii dirakovskikh polei”, Vesnik Brestskaga ýn-ta. Ser. 4 «Fizika. Matematika», 2010, no. 2, 5–12

[10] V. A. Pletyukhov, V. I. Strazhev, “Veschestvennoe pole Diraka–Kelera i dirakovskie chastitsy”, Vestnik BGU. Ser. 1, 2009, no. 2, 3–7

[11] A. A. Bogush, Vvedenie v kalibrovochnuyu polevuyu teoriyu elektroslabykh vzaimodeistvii, Nauka i tekhnika, Minsk, 1987, 359 pp.