Polarizability of elementary particles in the theoretical-field approach
Problemy fiziki, matematiki i tehniki, no. 4 (2011), pp. 7-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The effective Lagrangians and amplitudes of Compton scattering on pion and nucleon with the account of electric and magnetic polarizabilities are obtained on the basis of the theoretical-field approach and solutions of electrodynamic equations by means of Green functions covariant method. Calculations of magnetic and electric quasi-static polarizabilities of spinor particle were evaluated on the basis of matrix elements calculation for Compton scattering amplitudes.
Keywords: polarizability, Lagrangian, Compton scattering, Green function.
@article{PFMT_2011_4_a0,
     author = {V. V. Andreev and N. V. Maksimenko},
     title = {Polarizability of elementary particles in the theoretical-field approach},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--11},
     year = {2011},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_4_a0/}
}
TY  - JOUR
AU  - V. V. Andreev
AU  - N. V. Maksimenko
TI  - Polarizability of elementary particles in the theoretical-field approach
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 7
EP  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_4_a0/
LA  - ru
ID  - PFMT_2011_4_a0
ER  - 
%0 Journal Article
%A V. V. Andreev
%A N. V. Maksimenko
%T Polarizability of elementary particles in the theoretical-field approach
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 7-11
%N 4
%U http://geodesic.mathdoc.fr/item/PFMT_2011_4_a0/
%G ru
%F PFMT_2011_4_a0
V. V. Andreev; N. V. Maksimenko. Polarizability of elementary particles in the theoretical-field approach. Problemy fiziki, matematiki i tehniki, no. 4 (2011), pp. 7-11. http://geodesic.mathdoc.fr/item/PFMT_2011_4_a0/

[1] B. V. Bokut, A. N. Serdyukov, “O sokhranenii momenta impulsa elektromagnitnogo izlucheniya v opticheski aktivnykh sredakh”, ZhPS, XII:1 (1970), 139–141

[2] A. Klein, “Low-energy theorems for renormalizable field theories”, Phys. Rev., 99 (1955), 998–1008 | DOI | MR | Zbl

[3] A. M. Baldin, “Polarizability of nucleons”, Nucl. Phys. S, 18 (1960), 310–317 | DOI | MR

[4] V. A. Petrunkin, “Rasseyanie fotonov maloi energii na sisteme so spinom $1/2$”, ZhETF, 40:4 (1961), 1148–1154

[5] L. G. Moroz, F. I. Fedorov, “Matritsa rasseyaniya s uchetom vzaimodeistviya Pauli”, ZhETF, 39:2 (1960), 293–303 | MR

[6] B. V. Krylov, A. F. Radyuk, F. I. Fedorov, Spinovye chastitsy v pole ploskoi elektromagnitnoi volny, Preprint No 113, In-t fiziki AN BSSR, 1976, 60 pp.

[7] N. V. Maksimenko, L. G. Moroz, “Polyarizuemost i giratsiya elementarnykh chastits”, Voprosy atomnoi nauki i tekhniki. Seriya: obschaya i yadernaya fizika, 1979, no. 4 (10), 26–27

[8] M. I. Levchuk, L. G. Moroz, “Giratsiya nuklona kak odna iz kharakteristik ego elektromagnitnoi struktury”, Vestsi AN BSSR. Ser. fiz.-mat. nauk, 1985, no. 1, 45–54 | MR

[9] V. V. Andreev, N. V. Maksimenko, “Polyarizuemosti psevdoskalyarnykh mezonov v puankare-kovariantnoi kvarkovoi modeli”, Becnik Brestskaga ýniversiteta. Ser. Pryrodaznaýchykh navuk, 2009, no. 2 (33), 36–45

[10] V. G. Baryshevskii, Yadernaya optika polyarizovannykh sred, Energoatomizdat, M., 1995, 315 pp.

[11] S. R. de Groot, L. G. Sattorp, Elektrodinamika, Nauka, M., 1982, 560 pp.

[12] J. S. Anandan, “Classical and quantum interaction of the dipole”, Phys. Rev. Lett., 85 (2000), 1354–1357 | DOI

[13] A. A. Bogush, L. Moroz, Vvedenie v teoriyu klassicheskikh polei, Nauka i tekhnika, Minsk, 1968, 387 pp. | MR | Zbl

[14] A. A. Bogush, Vvedenie v kalibrovochnuyu polevuyu teoriyu elektroslabykh vzaimodeistvii, Nauka i tekhnika, Minsk, 1987, 359 pp.

[15] N. V. Maksimenko, E. V. Vakulina, “Nizkoenergeticheskoe komptonovskoe rasseyanie i polyarizuemost adronov spina 0 v kalibrovochno-invariantnom podkhode”, Izvestiya vuzov. Fizika, 53:7 (2010), 84–88 | Zbl

[16] V. A. Petrunkin, “Elektricheskaya i magnitnaya polyarizuemosti adronov”, EChAYa, 12 (1981), 692–753

[17] D. D. Berken, S. D. Drell, Relyativistskaya kvantovaya teoriya, v 2 t., v. 1, Relyativistskaya kvantovaya mekhanika, Nauka, M., 1978, 296 pp.

[18] I. V. Polubarinov, “Uravneniya kvantovoi elektrodinamiki”, EChAYa, 32:3 (2003), 738–811

[19] W.-Y. Tsai, L. L. Deraad, K. A. Milton, “Compton scattering. II: Differential cross-sections and left-right asymmetry”, Phys. Rev. D, 6 (1972), 1428–1438 | DOI

[20] A. Denner, S. Dittmaier, “Complete O(alpha) QED corrections to polarized Compton scattering”, Nucl. Phys. B, 540 (1999), 58–86 | DOI

[21] V. V. Andreev, A. M. Seitliev, “Elektricheskie i magnitnye kvazistaticheskie polyarizuemosti spinornoi chastitsy v KED”, Kovariantnye metody v teoreticheskoi fizike. Fizika elementarnykh chastits i teoriya otnositelnosti, 7, eds. Yu. A. Kurochkin i dr., Institut fiziki NAN Belarusi, Minsk, 2011, 8–15

[22] V. V. Andreev, A. M. Seitliev, “Invariantnye amplitudy komptonovskogo rasseyaniya v KED”, Vestsi NAH Belarusi. Ser.fiz.- mat. navuk, 2011, no. 3, 60–65

[23] E. Llanta, R. Tarrach, “Polarizability sum rules in QED”, Phys. Lett. B, 78 (1978), 586–589 | DOI

[24] B. R. Holstein, V. Pascalutsa, M. Vanderhaeghen, “Sum rules for magnetic moments and polarizabilities in QED and chiral effective-field theory”, Phys. Rev. D, 72:9 (2005), 094014 | DOI | MR

[25] K. Nakamura et al., “Review of Particle Physics”, Journal of Physics G, 37 (2010), 075021 | DOI