Polarizability of elementary particles in the theoretical-field approach
Problemy fiziki, matematiki i tehniki, no. 4 (2011), pp. 7-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

The effective Lagrangians and amplitudes of Compton scattering on pion and nucleon with the account of electric and magnetic polarizabilities are obtained on the basis of the theoretical-field approach and solutions of electrodynamic equations by means of Green functions covariant method. Calculations of magnetic and electric quasi-static polarizabilities of spinor particle were evaluated on the basis of matrix elements calculation for Compton scattering amplitudes.
Keywords: polarizability, Lagrangian, Compton scattering, Green function.
@article{PFMT_2011_4_a0,
     author = {V. V. Andreev and N. V. Maksimenko},
     title = {Polarizability of elementary particles in the theoretical-field approach},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--11},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_4_a0/}
}
TY  - JOUR
AU  - V. V. Andreev
AU  - N. V. Maksimenko
TI  - Polarizability of elementary particles in the theoretical-field approach
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 7
EP  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_4_a0/
LA  - ru
ID  - PFMT_2011_4_a0
ER  - 
%0 Journal Article
%A V. V. Andreev
%A N. V. Maksimenko
%T Polarizability of elementary particles in the theoretical-field approach
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 7-11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_4_a0/
%G ru
%F PFMT_2011_4_a0
V. V. Andreev; N. V. Maksimenko. Polarizability of elementary particles in the theoretical-field approach. Problemy fiziki, matematiki i tehniki, no. 4 (2011), pp. 7-11. http://geodesic.mathdoc.fr/item/PFMT_2011_4_a0/

[1] B. V. Bokut, A. N. Serdyukov, “O sokhranenii momenta impulsa elektromagnitnogo izlucheniya v opticheski aktivnykh sredakh”, ZhPS, XII:1 (1970), 139–141

[2] A. Klein, “Low-energy theorems for renormalizable field theories”, Phys. Rev., 99 (1955), 998–1008 | DOI | MR | Zbl

[3] A. M. Baldin, “Polarizability of nucleons”, Nucl. Phys. S, 18 (1960), 310–317 | DOI | MR

[4] V. A. Petrunkin, “Rasseyanie fotonov maloi energii na sisteme so spinom $1/2$”, ZhETF, 40:4 (1961), 1148–1154

[5] L. G. Moroz, F. I. Fedorov, “Matritsa rasseyaniya s uchetom vzaimodeistviya Pauli”, ZhETF, 39:2 (1960), 293–303 | MR

[6] B. V. Krylov, A. F. Radyuk, F. I. Fedorov, Spinovye chastitsy v pole ploskoi elektromagnitnoi volny, Preprint No 113, In-t fiziki AN BSSR, 1976, 60 pp.

[7] N. V. Maksimenko, L. G. Moroz, “Polyarizuemost i giratsiya elementarnykh chastits”, Voprosy atomnoi nauki i tekhniki. Seriya: obschaya i yadernaya fizika, 1979, no. 4 (10), 26–27

[8] M. I. Levchuk, L. G. Moroz, “Giratsiya nuklona kak odna iz kharakteristik ego elektromagnitnoi struktury”, Vestsi AN BSSR. Ser. fiz.-mat. nauk, 1985, no. 1, 45–54 | MR

[9] V. V. Andreev, N. V. Maksimenko, “Polyarizuemosti psevdoskalyarnykh mezonov v puankare-kovariantnoi kvarkovoi modeli”, Becnik Brestskaga ýniversiteta. Ser. Pryrodaznaýchykh navuk, 2009, no. 2 (33), 36–45

[10] V. G. Baryshevskii, Yadernaya optika polyarizovannykh sred, Energoatomizdat, M., 1995, 315 pp.

[11] S. R. de Groot, L. G. Sattorp, Elektrodinamika, Nauka, M., 1982, 560 pp.

[12] J. S. Anandan, “Classical and quantum interaction of the dipole”, Phys. Rev. Lett., 85 (2000), 1354–1357 | DOI

[13] A. A. Bogush, L. Moroz, Vvedenie v teoriyu klassicheskikh polei, Nauka i tekhnika, Minsk, 1968, 387 pp. | MR | Zbl

[14] A. A. Bogush, Vvedenie v kalibrovochnuyu polevuyu teoriyu elektroslabykh vzaimodeistvii, Nauka i tekhnika, Minsk, 1987, 359 pp.

[15] N. V. Maksimenko, E. V. Vakulina, “Nizkoenergeticheskoe komptonovskoe rasseyanie i polyarizuemost adronov spina 0 v kalibrovochno-invariantnom podkhode”, Izvestiya vuzov. Fizika, 53:7 (2010), 84–88 | Zbl

[16] V. A. Petrunkin, “Elektricheskaya i magnitnaya polyarizuemosti adronov”, EChAYa, 12 (1981), 692–753

[17] D. D. Berken, S. D. Drell, Relyativistskaya kvantovaya teoriya, v 2 t., v. 1, Relyativistskaya kvantovaya mekhanika, Nauka, M., 1978, 296 pp.

[18] I. V. Polubarinov, “Uravneniya kvantovoi elektrodinamiki”, EChAYa, 32:3 (2003), 738–811

[19] W.-Y. Tsai, L. L. Deraad, K. A. Milton, “Compton scattering. II: Differential cross-sections and left-right asymmetry”, Phys. Rev. D, 6 (1972), 1428–1438 | DOI

[20] A. Denner, S. Dittmaier, “Complete O(alpha) QED corrections to polarized Compton scattering”, Nucl. Phys. B, 540 (1999), 58–86 | DOI

[21] V. V. Andreev, A. M. Seitliev, “Elektricheskie i magnitnye kvazistaticheskie polyarizuemosti spinornoi chastitsy v KED”, Kovariantnye metody v teoreticheskoi fizike. Fizika elementarnykh chastits i teoriya otnositelnosti, 7, eds. Yu. A. Kurochkin i dr., Institut fiziki NAN Belarusi, Minsk, 2011, 8–15

[22] V. V. Andreev, A. M. Seitliev, “Invariantnye amplitudy komptonovskogo rasseyaniya v KED”, Vestsi NAH Belarusi. Ser.fiz.- mat. navuk, 2011, no. 3, 60–65

[23] E. Llanta, R. Tarrach, “Polarizability sum rules in QED”, Phys. Lett. B, 78 (1978), 586–589 | DOI

[24] B. R. Holstein, V. Pascalutsa, M. Vanderhaeghen, “Sum rules for magnetic moments and polarizabilities in QED and chiral effective-field theory”, Phys. Rev. D, 72:9 (2005), 094014 | DOI | MR

[25] K. Nakamura et al., “Review of Particle Physics”, Journal of Physics G, 37 (2010), 075021 | DOI