Elements of the height 3 of the lattice of all $\tau$-closed $n$-multiply $\omega$-composition formations
Problemy fiziki, matematiki i tehniki, no. 3 (2011), pp. 61-68

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper elements of the height 3 of the lattice $ c^{\tau}_{\omega_n}$ of all $\tau$-closed $n$-multiply $\omega$-composition formations are described. It is proved that if $\mathfrak{F}$ is an element of the height 3 of the lattice $ c^{\tau}_{\omega_n}$, then the lattice of $\tau$-closed $n$-multiply $\omega$-composition subformations of $\mathfrak{F}$ is distributive.
Keywords: finite group, $\tau$-closed $n$-multiply $\omega$-composition formation, height of formation.
Mots-clés : formation, $\omega$-composition satellite
@article{PFMT_2011_3_a9,
     author = {P. A. Zhiznevsky},
     title = {Elements of the height 3 of the lattice of all $\tau$-closed $n$-multiply $\omega$-composition formations},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {61--68},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_3_a9/}
}
TY  - JOUR
AU  - P. A. Zhiznevsky
TI  - Elements of the height 3 of the lattice of all $\tau$-closed $n$-multiply $\omega$-composition formations
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 61
EP  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_3_a9/
LA  - ru
ID  - PFMT_2011_3_a9
ER  - 
%0 Journal Article
%A P. A. Zhiznevsky
%T Elements of the height 3 of the lattice of all $\tau$-closed $n$-multiply $\omega$-composition formations
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 61-68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_3_a9/
%G ru
%F PFMT_2011_3_a9
P. A. Zhiznevsky. Elements of the height 3 of the lattice of all $\tau$-closed $n$-multiply $\omega$-composition formations. Problemy fiziki, matematiki i tehniki, no. 3 (2011), pp. 61-68. http://geodesic.mathdoc.fr/item/PFMT_2011_3_a9/