Elements of the height 3 of the lattice of all $\tau$-closed $n$-multiply $\omega$-composition formations
Problemy fiziki, matematiki i tehniki, no. 3 (2011), pp. 61-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper elements of the height 3 of the lattice $ c^{\tau}_{\omega_n}$ of all $\tau$-closed $n$-multiply $\omega$-composition formations are described. It is proved that if $\mathfrak{F}$ is an element of the height 3 of the lattice $ c^{\tau}_{\omega_n}$, then the lattice of $\tau$-closed $n$-multiply $\omega$-composition subformations of $\mathfrak{F}$ is distributive.
Keywords: finite group, $\tau$-closed $n$-multiply $\omega$-composition formation, height of formation.
Mots-clés : formation, $\omega$-composition satellite
@article{PFMT_2011_3_a9,
     author = {P. A. Zhiznevsky},
     title = {Elements of the height 3 of the lattice of all $\tau$-closed $n$-multiply $\omega$-composition formations},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {61--68},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_3_a9/}
}
TY  - JOUR
AU  - P. A. Zhiznevsky
TI  - Elements of the height 3 of the lattice of all $\tau$-closed $n$-multiply $\omega$-composition formations
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 61
EP  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_3_a9/
LA  - ru
ID  - PFMT_2011_3_a9
ER  - 
%0 Journal Article
%A P. A. Zhiznevsky
%T Elements of the height 3 of the lattice of all $\tau$-closed $n$-multiply $\omega$-composition formations
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 61-68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_3_a9/
%G ru
%F PFMT_2011_3_a9
P. A. Zhiznevsky. Elements of the height 3 of the lattice of all $\tau$-closed $n$-multiply $\omega$-composition formations. Problemy fiziki, matematiki i tehniki, no. 3 (2011), pp. 61-68. http://geodesic.mathdoc.fr/item/PFMT_2011_3_a9/

[1] A. N. Skiba, L. A. Shemetkov, “Kratno $\mathfrak{L}$-kompozitsionnye formatsii konechnykh grupp”, Ukrainskii matematicheskii zhurnal, 52:6 (2000), 783–797 | MR | Zbl

[2] A. N. Skiba, Algebra formatsii, Belarusskaya navuka, Minsk, 1997, 240 pp. | MR | Zbl

[3] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989, 253 pp. | MR

[4] G. Birkgof, Teoriya struktur, Nauka, M., 1984, 568 pp. | MR

[5] P. A. Zhiznevskii, V. G. Safonov, “O kriticheskikh chastichno kompozitsionnykh formatsiyakh”, Ves. Nats. akad. navuk. Belarusi. Ser. fiz.-mat. navuk, 2010, no. 3, 44–49 | MR

[6] M. V. Zadorozhnyuk, “Ob elementakh vysoty 3 reshetki $\tau$-zamknutykh $\omega$-kompozitsionnykh formatsii”, Vestnik Grodn. gos. un-ta, 2008, no. 2, 16–21

[7] P. A. Zhiznevskii, “O modulyarnosti i induktivnosti reshetki vsekh $\tau$-zamknutykh $n$-kratno $\omega$-kompozitsionnykh formatsii konechnykh grupp”, Izvestiya Gomelskogo gosudarstvennogo universiteta imeni F. Skoriny, 2010, no. 1 (58), 185–191

[8] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 267 pp. | MR | Zbl

[9] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 889 pp. | MR

[10] P. A. Zhiznevskii, K teorii kratno chastichno kompozitsionnykh formatsii konechnykh grupp, Preprint No 30, GGU im. F. Skoriny, Gomel, 2008, 35 pp.

[11] V. G. Safonov, “Kharakterizatsiya razreshimykh odnoporozhdennykh totalno nasyschennykh formatsii konechnykh grupp”, Sibirskii matematicheskikh zhurnal, 48:1 (2007), 185–191 | MR | Zbl

[12] M. V. Kenko, “O $\omega$-kompozitsionnykh formatsiyakh dliny 3”, Ves. Nats. akad. navuk. Belarusi. Ser. fiz.-mat. navuk, 2001, no. 1, 22–25 | MR

[13] M. V. Zadorozhnyuk, Elementy vysoty 3 reshetki vsekh $\tau$-zamknutykh $\omega$-kompozitsionnykh formatsii, Preprint No 8, Gomelskii gos. un-t im. F. Skoriny, Gomel, 2008