Generalized stochastic integral with respect to continuous martingale
Problemy fiziki, matematiki i tehniki, no. 3 (2011), pp. 50-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stochastic integral with respect to continuous martingale is considered in the algebra of generalized stochastic processes. The sufficient conditions when the above generalized stochastic process associates an ordinary stochastic process are formulated. The explicit form of the ordinary stochastic process is described.
Keywords: algebra of generalized stochastic processes, stochastic integral.
Mots-clés : martingale
@article{PFMT_2011_3_a7,
     author = {N. V. Bedziuk},
     title = {Generalized stochastic integral with respect to continuous martingale},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {50--56},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_3_a7/}
}
TY  - JOUR
AU  - N. V. Bedziuk
TI  - Generalized stochastic integral with respect to continuous martingale
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 50
EP  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_3_a7/
LA  - ru
ID  - PFMT_2011_3_a7
ER  - 
%0 Journal Article
%A N. V. Bedziuk
%T Generalized stochastic integral with respect to continuous martingale
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 50-56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_3_a7/
%G ru
%F PFMT_2011_3_a7
N. V. Bedziuk. Generalized stochastic integral with respect to continuous martingale. Problemy fiziki, matematiki i tehniki, no. 3 (2011), pp. 50-56. http://geodesic.mathdoc.fr/item/PFMT_2011_3_a7/

[1] K. Îto, “Stochastic integral”, Proc. Imp. Acad. Tokyo, 20 (1944), 519–524 | DOI | MR | Zbl

[2] D. L. Fisk, Quasi-martingales and stochastic integrals, Tech. Rep., Vol. 1, Dept. Math. Michigan State Univ., 1963 | MR

[3] R. L. Stratonovich, “Novaya forma zapisi stokhasticheskikh integralov i uravnenii”, Vestnik Moskovskogo un-ta, 1 (1964), 3–12

[4] S. Ogawa, “On a Riemann definition of the stochastic integral. I; II”, Proc. Japan Acad., 46:21 (1970), 153–157 ; 158–161 | DOI | MR | Zbl | Zbl

[5] N. V. Lazakovich, “Stokhasticheskie differentsialy v algebre obobschennykh sluchainykh protsessov”, Dokl. AN Belarusi, 38:5 (1994), 17–22 | MR

[6] N. V. Lazakovich, S. P. Stashulenok, O. L. Yablonskii, “Nekotorye approksimatsii stokhasticheskikh $\theta$-integralov”, Litovskii matem. sbornik, 39:2 (1999), 248–256 | MR | Zbl

[7] N. V. Lazakovich, A. L. Yablonski, “On the approximation of the solutions of stochastic equations with $\theta$-integrals”, Stochastics and Stochastics Reports, 76:2 (2004), 135–145 | DOI | MR | Zbl

[8] N. V. Lazakovich, O. L. Yablonskii, “Predelnoe povedenie itovskikh konechnykh summ s osredneniem”, Teoriya veroyatnostei i ee primeneniya, 50:4 (2005), 711–732 | DOI | MR

[9] S. Vatanabe, N. Ikeda, Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1981, 445 pp. | MR