Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2011_3_a7, author = {N. V. Bedziuk}, title = {Generalized stochastic integral with respect to continuous martingale}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {50--56}, publisher = {mathdoc}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2011_3_a7/} }
N. V. Bedziuk. Generalized stochastic integral with respect to continuous martingale. Problemy fiziki, matematiki i tehniki, no. 3 (2011), pp. 50-56. http://geodesic.mathdoc.fr/item/PFMT_2011_3_a7/
[1] K. Îto, “Stochastic integral”, Proc. Imp. Acad. Tokyo, 20 (1944), 519–524 | DOI | MR | Zbl
[2] D. L. Fisk, Quasi-martingales and stochastic integrals, Tech. Rep., Vol. 1, Dept. Math. Michigan State Univ., 1963 | MR
[3] R. L. Stratonovich, “Novaya forma zapisi stokhasticheskikh integralov i uravnenii”, Vestnik Moskovskogo un-ta, 1 (1964), 3–12
[4] S. Ogawa, “On a Riemann definition of the stochastic integral. I; II”, Proc. Japan Acad., 46:21 (1970), 153–157 ; 158–161 | DOI | MR | Zbl | Zbl
[5] N. V. Lazakovich, “Stokhasticheskie differentsialy v algebre obobschennykh sluchainykh protsessov”, Dokl. AN Belarusi, 38:5 (1994), 17–22 | MR
[6] N. V. Lazakovich, S. P. Stashulenok, O. L. Yablonskii, “Nekotorye approksimatsii stokhasticheskikh $\theta$-integralov”, Litovskii matem. sbornik, 39:2 (1999), 248–256 | MR | Zbl
[7] N. V. Lazakovich, A. L. Yablonski, “On the approximation of the solutions of stochastic equations with $\theta$-integrals”, Stochastics and Stochastics Reports, 76:2 (2004), 135–145 | DOI | MR | Zbl
[8] N. V. Lazakovich, O. L. Yablonskii, “Predelnoe povedenie itovskikh konechnykh summ s osredneniem”, Teoriya veroyatnostei i ee primeneniya, 50:4 (2005), 711–732 | DOI | MR
[9] S. Vatanabe, N. Ikeda, Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1981, 445 pp. | MR