On non-distributivity of the lattice of all $n$-multiply $\omega$-composition formations
Problemy fiziki, matematiki i tehniki, no. 3 (2011), pp. 84-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $n \ge 0$ and $\omega$ be an infinite set of primes. It is proved that the lattice of all $\tau$-closed $n$-multiply $\omega$-composition formations is not distributive.
Keywords: finite group, formation of groups, non-distributive lattice.
Mots-clés : $\omega$-composition satellite of formation
@article{PFMT_2011_3_a14,
     author = {A. A. Tsarev},
     title = {On non-distributivity of the lattice of all $n$-multiply $\omega$-composition formations},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {84--88},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_3_a14/}
}
TY  - JOUR
AU  - A. A. Tsarev
TI  - On non-distributivity of the lattice of all $n$-multiply $\omega$-composition formations
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 84
EP  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_3_a14/
LA  - ru
ID  - PFMT_2011_3_a14
ER  - 
%0 Journal Article
%A A. A. Tsarev
%T On non-distributivity of the lattice of all $n$-multiply $\omega$-composition formations
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 84-88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_3_a14/
%G ru
%F PFMT_2011_3_a14
A. A. Tsarev. On non-distributivity of the lattice of all $n$-multiply $\omega$-composition formations. Problemy fiziki, matematiki i tehniki, no. 3 (2011), pp. 84-88. http://geodesic.mathdoc.fr/item/PFMT_2011_3_a14/

[1] A. N. Skiba, “O lokalnykh formatsiyakh dliny 5”, Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp, Nauka i tekhnika, Minsk, 1986, 135–149 | MR

[2] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989, 254 pp. | MR

[3] A. N. Skiba, Algebra formatsii, Belarusskaya navuka, Minsk, 1997, 240 pp. | MR | Zbl

[4] Wenbin Guo, The theory of classes of groups, Sci. Press-Kluwer Acad. Publ., Beijing–New York–Dordrecht–Boston–London, 2000, 325 pp. | MR

[5] A. Ballester-Bolinches, L. A. Shemetkov, “On lattices of $p$-local formations of finite groups”, Math. Nachr., 186 (1997), 57–65 | DOI | MR | Zbl

[6] A. N. Skiba, L. A. Shemetkov, “Kratno $\mathfrak{L}$-kompozitsionnye formatsii konechnykh grupp”, Ukrainskii matem. zhurn., 52:6 (2000), 783–797 | MR | Zbl

[7] V. G. Safonov, “On modularity of the lattice of totally saturated formations of finite groups”, Comm. Algebra, 35:11 (2007), 3495–3502 | DOI | MR | Zbl

[8] V. G. Safonov, “On a question of the theory of totally saturated formations of finite groups”, Algebra Colloquium, 15:1 (2008), 119–128 | MR | Zbl

[9] V. G. Safonov, “O modulyarnosti reshetki $\tau$-zamknutykh totalno nasyschennykh formatsii”, Ukrainskii matem. zhurn., 58:6 (2006), 852–858 | MR | Zbl

[10] Yu. A. Skachkova, “Reshetki $\Omega$-rassloennykh formatsii”, Diskretnaya matematika, 14:2 (2002), 85–94 | DOI | MR | Zbl

[11] V. A. Vedernikov, E. N. Demina, “$\Omega$-rassloennye formatsii multioperatornykh $T$-grupp”, Sibirskii matem. zhurn., 51:5 (2010) | MR | Zbl

[12] P. A. Zhiznevskii, “O modulyarnosti i induktivnosti reshetki vsekh $\tau$-zamknutykh $n$-kratno $\omega$-kompozitsionnykh formatsii”, Izvestiya Gomelskogo gos. un-ta im. F. Skoriny, 2010, no. 1 (58), 185–191

[13] N. N. Vorobev, A. A. Tsarev, “O modulyarnosti reshetki $\tau$-zamknutykh $n$-kratno $\omega$-kompozitsionnykh formatsii”, Ukrainskii matem. zhurn., 62:4 (2010), 453–463 | MR

[14] A. N. Skiba, L. A. Shemetkov, “O minimalnom kompozitsionnom ekrane kompozitsionnnoi formatsii”, Voprosy algebry, 7, Gomelskii gos. un-t im. F. Skoriny, Gomel, 1992, 39–43 | MR