Local spectra of spatial frequencies of Bessel beams
Problemy fiziki, matematiki i tehniki, no. 2 (2011), pp. 15-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Local spatial spectra of Bessel beams fragments limited by the radial-shifted circular diaphragms have been investigated. It has been shown theoretically and experimentally that in case when circular diaphragm is placed on the axis of zero-order Bessel beam or includes its central maximum, the spectrum of such Bessel beam fragment is annular. When shifting the diaphragm behind the limits of the axial maximum, the spectrum takes the form of an arc. It has been established that the detected properties of spatial spectra occur independently of the technique and optical scheme of Bessel beams formation.
Keywords: Bessel light beam, local spatial spectrum
Mots-clés : annular and arc spectra.
@article{PFMT_2011_2_a2,
     author = {V. N. Belyi and N. S. Kazak and N. A. Khilo and P. I. Ropot and R. Yu. Vasilyev},
     title = {Local spectra of spatial frequencies of {Bessel} beams},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {15--21},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_2_a2/}
}
TY  - JOUR
AU  - V. N. Belyi
AU  - N. S. Kazak
AU  - N. A. Khilo
AU  - P. I. Ropot
AU  - R. Yu. Vasilyev
TI  - Local spectra of spatial frequencies of Bessel beams
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 15
EP  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_2_a2/
LA  - ru
ID  - PFMT_2011_2_a2
ER  - 
%0 Journal Article
%A V. N. Belyi
%A N. S. Kazak
%A N. A. Khilo
%A P. I. Ropot
%A R. Yu. Vasilyev
%T Local spectra of spatial frequencies of Bessel beams
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 15-21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_2_a2/
%G ru
%F PFMT_2011_2_a2
V. N. Belyi; N. S. Kazak; N. A. Khilo; P. I. Ropot; R. Yu. Vasilyev. Local spectra of spatial frequencies of Bessel beams. Problemy fiziki, matematiki i tehniki, no. 2 (2011), pp. 15-21. http://geodesic.mathdoc.fr/item/PFMT_2011_2_a2/

[1] J. Durnin, “Exact solution for nondiffracting beams. I: The scalar theory”, J. Opt. Soc. Am., 4 (1987), 651 | DOI

[2] Z. Bouchal, J. Wagner, M. Olivik, “Bessel beams in the focal region”, Opt. Eng., 34 (1995), 1680–1688 | DOI

[3] S. Chavez-Cerda, G. S. McDonald, G. H. C. New, “Nondiffracting beams: travelling, standing, rotating and spiral waves”, Opt. Communs., 123 (1996), 225–233 | DOI

[4] V. N. Belyi, N. S. Kazak, N. A. Khilo, “Frequency conversion of Bessel light beams in nonlinear crystals”, Quantum Electron., 30 (2000), 753–766 | DOI

[5] R. Gadonas et al., “Angular distribution of second harmonic radiation generated by Bessel beam”, Opt. Communs., 167 (1999), 299–309 | DOI

[6] T. Dresel et al., “Grazing-incidence interferometry applied to the measurement of cylindrical surfaces”, Opt. Eng., 34 (1995), 3531–3535 | DOI

[7] N. Khilo et al., “Conical beam-based laser profilometer for testing roller bearings”, Proc. SPIE, 6616, 2007, 66162L-01–66162L-08 | DOI

[8] D. McGloin, K. Dholakia, “Bessel beams: diffraction in a new light”, Contemp. Phys., 46, 2005, 15–28 | DOI

[9] R. Vasilyeu et al., “Generating superpositions of higher-order Bessel beams”, Opt. Express, 17 (2009), 23389–23395 | DOI

[10] V. Belyi et al., “Bessel-like beams with $z$-dependent cone angles”, Opt. Express, 18 (2010), 1966–1973 | DOI