On some characterization of Arens-Singer generalized analytic functions
Problemy fiziki, matematiki i tehniki, no. 2 (2011), pp. 65-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new characterization of generalized analytic functions in sense of Arens–Singer is given in the case of maximal semigroups. It is shown that this result can be applied to approximation problems.
Keywords: algebra of generalized analytic functions, semigroup of semicharacters, Shilov boundary, approximation.
@article{PFMT_2011_2_a11,
     author = {A. R. Mirotin and M. A. Romanova},
     title = {On some characterization of {Arens-Singer} generalized analytic functions},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {65--68},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_2_a11/}
}
TY  - JOUR
AU  - A. R. Mirotin
AU  - M. A. Romanova
TI  - On some characterization of Arens-Singer generalized analytic functions
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 65
EP  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_2_a11/
LA  - ru
ID  - PFMT_2011_2_a11
ER  - 
%0 Journal Article
%A A. R. Mirotin
%A M. A. Romanova
%T On some characterization of Arens-Singer generalized analytic functions
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 65-68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_2_a11/
%G ru
%F PFMT_2011_2_a11
A. R. Mirotin; M. A. Romanova. On some characterization of Arens-Singer generalized analytic functions. Problemy fiziki, matematiki i tehniki, no. 2 (2011), pp. 65-68. http://geodesic.mathdoc.fr/item/PFMT_2011_2_a11/

[1] R. Arens, I. M. Singer, “Generalized analytic functions”, Trans. Amer. Math. Soc., 81:2 (1956), 379–393 | DOI | MR | Zbl

[2] T. Gamelin, Ravnomernye algebry, Mir, M., 1973, 336 pp. | Zbl

[3] W. Rudin, Fourier analysis on groups, Interscience Publishers, N. Y., 1962, 285 pp. | MR | Zbl

[4] H. Helson, “Analyticity on compact abelian groups”, Algebras in analysis, Proceedings of instructional conference and NATO Advanced Study Institute (Birmingem, 1973), ed. H. Helson, Kluwer, London, 1975, 1–62 | MR

[5] T. Tonev, S. A. Grigoryan, “Analytic functions on compact groups and their applications to almost periodic functions”, Contemporary Math., 328, no. 2, 2003, 299–322 | DOI | MR | Zbl

[6] S. A. Grigoryan, T. Tonev, “Shift-invariant algebras on groups”, Contemporary Math., 363, no. 1, 2004, 111–127 | DOI | MR | Zbl

[7] A. R. Mirotin, “Teorema Peli–Vinera dlya konusov v lokalno kompaktnykh abelevykh gruppakh”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 1995, no. 3, 35–44 | MR | Zbl

[8] A. R. Mirotin, M. A. Romanova, “Interpolyatsionnye mnozhestva algebry obobschennykh analiticheskikh funktsii”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 2007, no. 3, 51–59 | MR | Zbl

[9] A. Klifford, G. Preston, Algebraicheskaya teoriya polugrupp, v 2 t., v. 1, Nauka, M., 1972, 285 pp.

[10] S. A. Grigoryan, T. V. Tonev, Shift-invariant uniform algebras on groups, Birkhauser, N. Y.–Basel, 2006, 292 pp. | MR | Zbl

[11] L. Fuks, Chastichno uporyadochennye algebraicheskie sistemy, Mir, M., 1965, 342 pp. | MR

[12] M. A. Romanova, “Vychislenie prostranstva maksimalnykh idealov i granitsy Shilova nekotorykh algebr obobschennykh analiticheskikh funktsii”, Vesnik Mazyrskaga dzyarzhaŭnaga pedagagichnaga universiteta, 2006, no. 2 (15), 16–22