Оn direct decompositions of $n$-multiply $\omega$-saturated formations
Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 48-51

Voir la notice de l'article provenant de la source Math-Net.Ru

All groups considered are finite. Let $\{\mathfrak{F}_i \mid i\in I\}$ be a set of non-empty subclasses of a class of groups $\mathfrak{F}$ such that $\mathfrak{F}_i \cap \mathfrak{F}_j = (1)$ for all distinct $i, j \in I$. We write $\mathfrak{F}=\bigoplus_{i\in I}\mathfrak{F}_i$ to denote the collection of all groups of the form $А_1\times \dots \times А_t$, where $A_1 \in \mathfrak{F}_{i_1},\dots,A_t \in \mathfrak{F}_{i_1}$ for some $i_1,\dots, i_t \in I$. We proved the following theorem. Theorem. Let $\mathfrak{F}=\bigoplus_{i \in I} \mathfrak{F}_i$ where $\mathfrak{F}_i$ is a formation. Then $\mathfrak{F}$ is $n$-multiply ($n\ge 1$)$\omega$-saturated formation if and only if $\mathfrak{F}_i$ is $n$-multiply $\omega$-saturated for all $i \in I$.
Keywords: formation of finite groups, complemented subformation, direct decomposition of a class of groups, $\omega$-local satellite, $n$-multiply $\omega$-saturated formation.
@article{PFMT_2011_1_a6,
     author = {N. N. Vorob'ev and A. P. Mekhovich},
     title = {{\CYRO}n direct decompositions of $n$-multiply $\omega$-saturated formations},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {48--51},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_1_a6/}
}
TY  - JOUR
AU  - N. N. Vorob'ev
AU  - A. P. Mekhovich
TI  - Оn direct decompositions of $n$-multiply $\omega$-saturated formations
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 48
EP  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_1_a6/
LA  - ru
ID  - PFMT_2011_1_a6
ER  - 
%0 Journal Article
%A N. N. Vorob'ev
%A A. P. Mekhovich
%T Оn direct decompositions of $n$-multiply $\omega$-saturated formations
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 48-51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_1_a6/
%G ru
%F PFMT_2011_1_a6
N. N. Vorob'ev; A. P. Mekhovich. Оn direct decompositions of $n$-multiply $\omega$-saturated formations. Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 48-51. http://geodesic.mathdoc.fr/item/PFMT_2011_1_a6/