Оn direct decompositions of $n$-multiply $\omega$-saturated formations
Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 48-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

All groups considered are finite. Let $\{\mathfrak{F}_i \mid i\in I\}$ be a set of non-empty subclasses of a class of groups $\mathfrak{F}$ such that $\mathfrak{F}_i \cap \mathfrak{F}_j = (1)$ for all distinct $i, j \in I$. We write $\mathfrak{F}=\bigoplus_{i\in I}\mathfrak{F}_i$ to denote the collection of all groups of the form $А_1\times \dots \times А_t$, where $A_1 \in \mathfrak{F}_{i_1},\dots,A_t \in \mathfrak{F}_{i_1}$ for some $i_1,\dots, i_t \in I$. We proved the following theorem. Theorem. Let $\mathfrak{F}=\bigoplus_{i \in I} \mathfrak{F}_i$ where $\mathfrak{F}_i$ is a formation. Then $\mathfrak{F}$ is $n$-multiply ($n\ge 1$)$\omega$-saturated formation if and only if $\mathfrak{F}_i$ is $n$-multiply $\omega$-saturated for all $i \in I$.
Keywords: formation of finite groups, complemented subformation, direct decomposition of a class of groups, $\omega$-local satellite, $n$-multiply $\omega$-saturated formation.
@article{PFMT_2011_1_a6,
     author = {N. N. Vorob'ev and A. P. Mekhovich},
     title = {{\CYRO}n direct decompositions of $n$-multiply $\omega$-saturated formations},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {48--51},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_1_a6/}
}
TY  - JOUR
AU  - N. N. Vorob'ev
AU  - A. P. Mekhovich
TI  - Оn direct decompositions of $n$-multiply $\omega$-saturated formations
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 48
EP  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_1_a6/
LA  - ru
ID  - PFMT_2011_1_a6
ER  - 
%0 Journal Article
%A N. N. Vorob'ev
%A A. P. Mekhovich
%T Оn direct decompositions of $n$-multiply $\omega$-saturated formations
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 48-51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_1_a6/
%G ru
%F PFMT_2011_1_a6
N. N. Vorob'ev; A. P. Mekhovich. Оn direct decompositions of $n$-multiply $\omega$-saturated formations. Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 48-51. http://geodesic.mathdoc.fr/item/PFMT_2011_1_a6/

[1] A. N. Skiba, “O formatsiyakh s zadannymi sistemami podformatsii”, Podgruppovoe stroenie konechnykh grupp, Trudy Gomelskogo seminara, ed. V. S. Monakhov, In-t matematiki AN BSSR, Minsk, 1981, 155–180 | MR

[2] K. Doerk, T. Hawkes, Finite soluble groups, de Gruyter Exp. Math., 4, Walter de Gruyter Co., Berlin–New York, 1992, 891 pp. | MR

[3] A. N. Skiba, Algebra formatsii, Belarusskaya navuka, Minsk, 1997, 240 pp. | MR | Zbl

[4] S. F. Kamornikov, M. V. Selkin, Podgruppovye funktory i klassy konechnykh grupp, Belarusskaya navuka, Minsk, 2003, 254 pp.

[5] S. F. Kamornikov, “Pronormalnye proektory konechnykh $\omega$-razreshimykh grupp”, Voprosy algebry, 1986, no. 2, 80–86 | MR | Zbl

[6] V. A. Vedernikov, “Vpolne faktorizuemye formatsii konechnykh grupp”, Voprosy algebry, 1990, no. 5, 28–34 | Zbl

[7] A. F. Vasilev, S. F. Kamornikov, V. N. Semenchuk, “O reshetkakh podgrupp konechnykh grupp”, Beskonechnye gruppy i drugie primykayuschie algebraicheskie struktury, sb. st., ed. N. S. Chernikov, In-t matematiki AN Ukrainy, Kiev, 1993, 27–54 | MR

[8] A. N. Skiba, “O lokalnykh formatsiyakh s dopolnyaemymi lokalnymi podformatsiyami”, Izv. vuzov. Matematika, 1994, no. 10, 75–80 | MR | Zbl

[9] A. N. Skiba, “O dopolnyaemykh podformatsiyakh”, Voprosy algebry, 1996, no. 9, 55–62

[10] V. G. Safonov, “O kratno lokalnykh formatsiyakh s ogranichennym nilpotentnym defektom”, Voprosy algebry, 1996, no. 9, 112–127 | MR

[11] N. N. Vorobev, “O pryamykh razlozheniyakh $\omega$-lokalnykh formatsii i klassov Fittinga”, Vesnik Vitsebskaga dzyarzhaŭnaga universiteta, 1997, no. 3, 55–58

[12] N. G. Zhevnova, A. N. Skiba, “$p$-nasyschennye formatsii s dopolnyaemymi $p$-nasyschennymi podformatsiyami”, Izv. vuzov. Matematika, 1997, no. 5, 23–29 | MR | Zbl

[13] I. V. Bliznets, N. N. Vorobev, “O pryamykh razlozheniyakh kompozitsionnykh formatsii”, Voprosy algebry, 1998, no. 12, 106–112 | MR | Zbl

[14] N. N. Vorobev, A. N. Skiba, “O bulevykh reshetkakh $n$-kratno lokalnykh klassov Fittinga”, Sibirskii matematicheskii zhurnal, 40:3 (1999), 523–530 | MR

[15] N. N. Vorobev, “O bulevykh reshetkakh $n$-kratno $\omega$-lokalnykh klassov Fittinga”, Izvestiya Gomelskogo gos. un-ta im. F. Skoriny, 2002, no. 5 (14), Voprosy algebry-18, 43–46 | MR

[16] A. F. Vasilev, S. F. Kamornikov, “K probleme Kegelya–Shemetkova o reshetkakh obobschenno subnormalnykh podgrupp”, Algebra i logika, 41:4 (2002), 411–428 | MR

[17] Yu. A. Skachkova, “Bulevy reshetki kratno $\Omega$-rassloennykh formatsii”, Diskretnaya matematika, 14:3 (2002), 42–46 | DOI | MR

[18] O. V. Kamozina, “Bulevy reshetki $n$-kratno $\Omega$-bikanonicheskikh klassov Fittinga”, Diskretnaya matematika, 14:3 (2002), 47–53 | DOI | MR | Zbl

[19] N. N. Vorobev, V. O. Poboinev, “O bulevykh reshetkakh chastichno nasyschennykh formatsii”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2010, no. 4, 37–42 | MR

[20] V. V. Aniskov, A. N. Skiba, On local formations with complemented local subformations, Preprint No 5, Gomel State University, Gomel, 1993, 10 pp. | MR

[21] I. V. Bliznets, A. N. Skiba, Razlozhimye $\omega$-kompozitsionnye formatsii, Preprint No 33, Gomelskii gos. universitet im. F. Skoriny, Gomel, 2002, 15 pp. | Zbl

[22] M. I. Eidinov, “O formatsiyakh s dopolnyaemymi podformatsiyami”, Tezisy dokl. IX Vsesoyuzn. simpoziuma po teorii grupp, M., 1984, 101

[23] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR | Zbl

[24] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989, 256 pp. | MR

[25] A. N. Skiba, L. A. Shemetkov, “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Matem. trudy, 2:2 (1999), 114–147 | MR | Zbl