Supersolvability of a finite group with $\mu X$-supplemented subgroups
Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 84-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group, $X$ – some non-empty subset of the group $G$. The subgroup $H$ of group $G$ is identified $\mu X$-supplemented in $G$ if there exists a subgroup $B$ such that $G = HB$ and for any maximal subgroup $H_1$ of $H$ there is $x \in X$ such that $H_1 B \ne G$ and $H_1 B^x = B^x H_1$. The $p$-supersolvability of a finite group with $\mu X$-supplemented Sylow $p$-subgroup for initial importance of the number $p$ are obtained. New conditions of the supersolvability finite groups is received.
Keywords: finite group, Sylow subgroup, $\mu X$-supplemented subgroup
Mots-clés : supersolvable group, $p$-supersolvable group.
@article{PFMT_2011_1_a13,
     author = {A. V. Shnyparkov},
     title = {Supersolvability of a finite group with $\mu X$-supplemented subgroups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {84--88},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_1_a13/}
}
TY  - JOUR
AU  - A. V. Shnyparkov
TI  - Supersolvability of a finite group with $\mu X$-supplemented subgroups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 84
EP  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_1_a13/
LA  - ru
ID  - PFMT_2011_1_a13
ER  - 
%0 Journal Article
%A A. V. Shnyparkov
%T Supersolvability of a finite group with $\mu X$-supplemented subgroups
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 84-88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_1_a13/
%G ru
%F PFMT_2011_1_a13
A. V. Shnyparkov. Supersolvability of a finite group with $\mu X$-supplemented subgroups. Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 84-88. http://geodesic.mathdoc.fr/item/PFMT_2011_1_a13/

[1] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006, 207 pp.

[2] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR | Zbl

[3] O. H. Kegel, “On Hupperts characterization of finite supersoluble groups”, Proc. Internat. Conf. Theory Groups (Canberra, 1965), 209–215 | MR | Zbl

[4] O. H. Kegel, “Producte nilpotenter gruppen”, Arch. Math., 12 (1961), 90–93 | DOI | MR | Zbl

[5] V. S. Monakhov, “Nerazreshimye konechnye gruppy s nilpotentnymi dobavleniyami k nesverkhrazreshimym podgruppam”, Izvestiya akademii nauk Belarusi, 1993, no. 3, 27–29 | MR

[6] Long Miao, Wolfgang Lempken, “On $\mu$-supplemented subgroups of finite groups”, Group Theory and Related Topics, The International Conference, Collection of abstracts (April, 19–25, 2008, Xuzhou, China), 24

[7] V. S. Monakhov, A. V. Shnyparkov, “O konechnykh gruppakh s $\mu$-dobavlyaemymi podgruppami”, Tez. dokl. X Mezhdunar. nauch. konf. (Minsk, 3–7 noyabrya 2008 g.), v. Chast 1, Institut matematiki NAN Belarusi, Mn., 2008, 42

[8] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967, 793 pp. | MR | Zbl