Supersolvability of a finite group with $\mu X$-supplemented subgroups
Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 84-88

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group, $X$ – some non-empty subset of the group $G$. The subgroup $H$ of group $G$ is identified $\mu X$-supplemented in $G$ if there exists a subgroup $B$ such that $G = HB$ and for any maximal subgroup $H_1$ of $H$ there is $x \in X$ such that $H_1 B \ne G$ and $H_1 B^x = B^x H_1$. The $p$-supersolvability of a finite group with $\mu X$-supplemented Sylow $p$-subgroup for initial importance of the number $p$ are obtained. New conditions of the supersolvability finite groups is received.
Keywords: finite group, Sylow subgroup, $\mu X$-supplemented subgroup
Mots-clés : supersolvable group, $p$-supersolvable group.
@article{PFMT_2011_1_a13,
     author = {A. V. Shnyparkov},
     title = {Supersolvability of a finite group with $\mu X$-supplemented subgroups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {84--88},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_1_a13/}
}
TY  - JOUR
AU  - A. V. Shnyparkov
TI  - Supersolvability of a finite group with $\mu X$-supplemented subgroups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 84
EP  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_1_a13/
LA  - ru
ID  - PFMT_2011_1_a13
ER  - 
%0 Journal Article
%A A. V. Shnyparkov
%T Supersolvability of a finite group with $\mu X$-supplemented subgroups
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 84-88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_1_a13/
%G ru
%F PFMT_2011_1_a13
A. V. Shnyparkov. Supersolvability of a finite group with $\mu X$-supplemented subgroups. Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 84-88. http://geodesic.mathdoc.fr/item/PFMT_2011_1_a13/