Characteristic of UMD spaces with Hilbert transformation of vector-valued functions on the field of $p$-adic numbers
Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 79-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Hilbert transformation of vector-valued functions on the group of $p$-adic integers $Z_p$ taking values in Banach space $X$ , and square-integrable in Bochner sense. If Hilbert transformation $H \colon L_2(Z_p, X) \to L_2(Z_p, X)$ with $p \ne 2$ is a bounded operator, then Banach space $X$ is an UMD space.
Mots-clés : Hilbert transformation, Fourier transformation.
Keywords: UMD space, $p$-adic numbers
@article{PFMT_2011_1_a12,
     author = {A. G. Sidoryk},
     title = {Characteristic of {UMD} spaces with {Hilbert} transformation of vector-valued functions on the field of $p$-adic numbers},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {79--83},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_1_a12/}
}
TY  - JOUR
AU  - A. G. Sidoryk
TI  - Characteristic of UMD spaces with Hilbert transformation of vector-valued functions on the field of $p$-adic numbers
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 79
EP  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_1_a12/
LA  - ru
ID  - PFMT_2011_1_a12
ER  - 
%0 Journal Article
%A A. G. Sidoryk
%T Characteristic of UMD spaces with Hilbert transformation of vector-valued functions on the field of $p$-adic numbers
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 79-83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_1_a12/
%G ru
%F PFMT_2011_1_a12
A. G. Sidoryk. Characteristic of UMD spaces with Hilbert transformation of vector-valued functions on the field of $p$-adic numbers. Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 79-83. http://geodesic.mathdoc.fr/item/PFMT_2011_1_a12/

[1] J. Mikusinski, The Bochner integral, Acad. Press, 1978 | MR | Zbl

[2] B. Maurey, “Systeme de Haar” (1974–1975), Seminaire Maurey–Schwartz, I, Ecole Polytechnique, Paris, 11 pp. | MR

[3] J. Bourgain, “Some remarks on Banach spaces in which martingale differences are unconditional”, Ars. Mat., 21:2 (1983), 163–168 | DOI | MR | Zbl

[4] D. L. Burkholder, “A geometrical condition that implies the existence of certain singular integrals of Banach-space-valued functions”, Proc. Conf. Harmonic Analysis in Honor of A. Zygmund (1981), 270–286 | MR

[5] S. Kwapien, “Isomorphic characterizations of inner product spaces by orthogonal series with vector-valued coefficients”, Studia mathematica, XLIV (1972), 583–595 | MR | Zbl

[6] K. Philips, “Hilbert transform for the $p$-adic and $p$-series fields”, Pacific journal of mathematics, 23:2 (1967), 329–347 | DOI | MR

[7] E. M. Radyno, Ya. V. Radyno, A. G. Sidorik, “Kharakteristika gilbertovykh prostranstv s ispolzovaniem preobrazovaniya Fure na pole $p$-adicheskikh chisel”, Dokl. NAN Belarusi, 48:5 (2007), 17–22 | MR

[8] I. M. Vinogradov, Osnovy teorii chisel, Nauka, M., 1965 | MR

[9] G. Pisier, “Martingales with values in uniformly convex spaces”, Israel J. Math., 20 (1975), 326–350 | DOI | MR | Zbl