Approximation of continuous functions by rational Pad--Chebyshev fractions
Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 69-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with the description of the asymptotic behaviour of parabolic sequences of the elements of Pade–Chebyshev table for some continuous functions represented by Chebyshev series. The asymptotic form of the best rational approximations for such functions is determined.
Keywords: best approximations in the uniform norm, Pade–Chebyshev approximant, trigonometric Pade approximant, rational approximation, the accurate constants of rational approximation.
@article{PFMT_2011_1_a11,
     author = {Yu. A. Labych and A. P. Starovoitov},
     title = {Approximation of continuous functions by rational {Pad--Chebyshev} fractions},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {69--78},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_1_a11/}
}
TY  - JOUR
AU  - Yu. A. Labych
AU  - A. P. Starovoitov
TI  - Approximation of continuous functions by rational Pad--Chebyshev fractions
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 69
EP  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_1_a11/
LA  - ru
ID  - PFMT_2011_1_a11
ER  - 
%0 Journal Article
%A Yu. A. Labych
%A A. P. Starovoitov
%T Approximation of continuous functions by rational Pad--Chebyshev fractions
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 69-78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_1_a11/
%G ru
%F PFMT_2011_1_a11
Yu. A. Labych; A. P. Starovoitov. Approximation of continuous functions by rational Pad--Chebyshev fractions. Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 69-78. http://geodesic.mathdoc.fr/item/PFMT_2011_1_a11/

[1] S. N. Bernshtein, Ekstremalnye svoistva polinomov, ONTI, M.–L., 1937

[2] S. N. Bernshtein, Sobranie sochinenii, V 4-kh tomakh, v. 1, Izd-vo AN SSSR, M., 1952

[3] D. Braess, “On the conjecture of Meinardus on rational approximation of $e^z$”, J. Approx. Theory, 40:4 (1984), 375–379 | DOI | MR | Zbl

[4] G. Shtal, “Nailuchshie ravnomernye ratsionalnye approksimatsii $|x|$ na $[-1, 1]$”, Matem. sbornik, 183:8 (1992), 85–118 | MR

[5] H. Stahl, “Best uniform rational approximation of $x^\alpha$ on $[0,1]$”, Acta Math., 190:2 (2003), 241–306 | DOI | MR | Zbl

[6] A. I. Aptekarev, “Tochnye konstanty ratsionalnykh approksimatsii analiticheskikh funktsii”, Matem. sbornik, 193:1 (2002), 3–72 | DOI | MR | Zbl

[7] A. A. Gonchar, E. A. Rakhmanov, “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Matem. sbornik, 134 (176):3 (1987), 306–352 | MR | Zbl

[8] D. J. Newman, “Rational approximation to $|x|$”, Mich. Math., 11:1 (1964), 11–14 | DOI | MR | Zbl

[9] A. A. Gonchar, “O zadachakh E. I. Zolotareva, svyazannykh s ratsionalnymi funktsiyami”, Matem. sbornik, 78:3 (1968), 640–653 | MR | Zbl

[10] A. A. Gonchar, “O skorosti ratsionalnoi approksimatsii nepreryvnykh funktsii s kharakternymi osobennostyami”, Matem. sbornik, 78:4 (1967), 630–638

[11] A. P. Bulanov, “Asimptotika dlya nailuchshikh uklonenii $|x|$ ot ratsionalnykh funktsii”, Matem. sbornik, 76:2 (1968), 288–303 | MR | Zbl

[12] N. S. Vyacheslavov, “Approksimatsiya $|x|$ ratsionalnymi funktsiyami”, Mat. zametki, 16:2 (1971), 163–171 | MR | Zbl

[13] N. S. Vyacheslavov, “Ob approksimatsii $x^\alpha$ ratsionalnymi funktsiyami”, Izv. AN SSSR. Ser. matem., 44:1 (1980), 92–110 | MR

[14] A. A. Gonchar, “Ratsionalnye approksimatsii analiticheskikh funktsii”, Trudy mezhdunarodnogo kongressa matematikov (Berkli, 1986), 739–748

[15] S. P. Suetin, “O ravnomernoi skhodimosti diagonalnoi approksimatsii Pade dlya giperellipticheskikh funktsii”, Matem. sbornik, 191:9 (2000), 81–114 | DOI | MR | Zbl

[16] S. P. Suetin, “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, Uspekhi matem. nauk, 57:1 (2002), 45–142 | DOI | MR | Zbl

[17] L. L. Berezkina, Trigonometricheskie approksimatsii Pade i nailuchshie ratsionalnye priblizheniya, Dis. ... kand. fiz.-mat. nauk: 01.01.01, Minsk, 1988

[18] Ta Khong Kuang, Approksimatsii Pade i asimptotiki nailuchshikh ratsionalnykh priblizhenii, Dis. ... kand. fiz.-mat. nauk: 01.01.01, Minsk, 1991

[19] Yu. Lyuk, Spetsialnye matematicheskie funktsii i ikh approksimatsii, Mir, M., 1980

[20] Yu. A. Labych, A. P. Starovoitov, “Trigonometricheskie approksimatsii Pade funktsii s regulyarno ubyvayuschimi koeffitsientami Fure”, Matem. sbornik, 200:7 (2009), 107–130 | DOI | MR | Zbl

[21] A. P. Starovoitov, N. A. Starovoitova, “Approksimatsii Pade funktsii Mittag–Lefflera”, Matem. sbornik, 198:7 (2007), 109–122 | DOI | MR | Zbl

[22] Khr. Semerdzhiev, “Approksimatsii Pade dlya funktsii, zadannykh trigonometricheskimi ryadami”, Nauchnye trudove na Plovd. universitet, 13:1 (1975), 409–419 | MR

[23] L. L. Berezkina, O ratsionalnoi approksimatsii tselykh $2\pi$-periodicheskikh funktsii, Dep. v VINITI 15.10.86., No 7263-V86, BGU, Minsk, 1986

[24] G. G. Lorentz, M. V. Golitschek, Y. Makavoz, Constructive Approximation. Advanced problems, Springer-Verlag, New York–Berlin–Heidelberg, 1996 | MR

[25] I. P. Natanson, Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949