Properties of vectorial paraxial light beams.
Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 20-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

The simple formalism for the description of the vector paraxial light beams of general type is offered. Simple expressions for the energy flux density of the electromagnetic field $\mathbf{S}$ of the vector light beams with the homogeneous polarization are discovered. It is discovered that paraxial circular polarized light beams are spread independently, and their streams of energy are parted and they are also independent.
Keywords: paraxial beams, vector beams, light beams, polarizable properties, energy properties, polarization.
@article{PFMT_2011_1_a1,
     author = {S. S. Girgel},
     title = {Properties of vectorial paraxial light beams.},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {20--24},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_1_a1/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Properties of vectorial paraxial light beams.
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 20
EP  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_1_a1/
LA  - ru
ID  - PFMT_2011_1_a1
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Properties of vectorial paraxial light beams.
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 20-24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_1_a1/
%G ru
%F PFMT_2011_1_a1
S. S. Girgel. Properties of vectorial paraxial light beams.. Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 20-24. http://geodesic.mathdoc.fr/item/PFMT_2011_1_a1/

[1] G. D. Boyd, J. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers”, Bell Syst. Techn. Journ., 40 (1961), 489–508

[2] G. Goubau, F. Schwering, “On the guided propagation of electromagnetic wave beams”, IRe Trans. Antennas Propag. AP, 9 (1961), 1808–1813 | MR

[3] G. A. Deshamps, “Gaussian beams as a bundle of complex rays”, Electron. Lett., 7 (1971), 684–685 | DOI

[4] Kh. Kogelnik, T. Li, “Rezonatory i svetovye puchki lazerov”, TIIER, 54:10 (1966), 95–112

[5] A. M. Belskii, T. M. Korneichik, A. P. Khapalyuk, Prostranstvennaya struktura lazernogo izlucheniya, Izd-vo BGU im. V. I. Lenina, M., 1982, 198 pp.

[6] A. Yu. Ardashev, V. A. Kashin, G. V. Skrotskii, “Nekotorye svoistva uzkogo monokhromaticheskogo svetovogo puchka”, Izvestiya vuzov. Radiofizika, 11:12 (1968), 1848–1851

[7] A. M. Goncharenko, Gaussovy puchki sveta, Nauka i tekhnika, Mn., 1977, 144 pp.

[8] L. W. Davis, G. Patsakos, “TM and TE electromagnetic beams in free space”, Optics Letters, 8:1 (1981), 22–23 | DOI

[9] Kh. Khaus, Volny i polya v optoelektronike, Mir, M., 1988, 432 pp.

[10] Koichi Shimoda, “Vectorial analysis of the Gaussian beams of light”, J. Phys. Soc. Japan, 60:1 (1991), 141–144 | DOI | MR

[11] L. A. Vainshtein, Elektromagnitnye volny, Radio i svyaz, M., 1988, 440 pp.

[12] S. R. Seshadri, “Electromagnetic Gaussian beam”, J. Opt. Soc. Am. A, 15:22 (1987), 2712–2719 | MR

[13] M. Born, E. Volf, Osnovy optiki, Nauka, M., 1970, 587 pp.

[14] F. I. Fedorov, Optika anizotropnykh sred, Izd-vo AN BSSR, Mn., 1976, 380 pp.