On the $SE$-core of subgroups of a finite group
Problemy fiziki, matematiki i tehniki, no. 4 (2010), pp. 39-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give some conditions under which a finite group belongs to a composition formation containing all finite supersoluble groups. The main results of the papers [20]–[32], [34]–[37] are generalized.
Keywords: finite group, saturated formation, Baer-local formation, $p$-nilpotent group, cyclic chief factor, supersoluble subgroup, quasisupersoluble group, $S$-quasinormal subgroup, $S$-supplemented subgroup, $S$-quasinormally embedded subgroup, the $SE$-core of subgroup, Sylow subgroup, the generalized Fitting subgroup, maximal subgroup.
Mots-clés : composition formation
@article{PFMT_2010_4_a6,
     author = {A. N. Skiba},
     title = {On the $SE$-core of subgroups of a finite group},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {39--45},
     publisher = {mathdoc},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2010_4_a6/}
}
TY  - JOUR
AU  - A. N. Skiba
TI  - On the $SE$-core of subgroups of a finite group
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2010
SP  - 39
EP  - 45
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2010_4_a6/
LA  - en
ID  - PFMT_2010_4_a6
ER  - 
%0 Journal Article
%A A. N. Skiba
%T On the $SE$-core of subgroups of a finite group
%J Problemy fiziki, matematiki i tehniki
%D 2010
%P 39-45
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2010_4_a6/
%G en
%F PFMT_2010_4_a6
A. N. Skiba. On the $SE$-core of subgroups of a finite group. Problemy fiziki, matematiki i tehniki, no. 4 (2010), pp. 39-45. http://geodesic.mathdoc.fr/item/PFMT_2010_4_a6/

[1] B. Huppert, Endliche Gruppen, v. I, Springer, New York, 1967, 793 pp. | MR | Zbl

[2] L. A. Shemetkov, Formations of finite groups, Nauka, Main Editorial Board for Physical and Mathematical Literature, M., 1978, 272 pp. | MR | Zbl

[3] L. A. Shemetkov, A. N. Skiba, Formations of Algebraic Systems, Nauka, M., 1989, 256 pp. | MR

[4] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite Groups, Springer, Dordrecht, 2006, 367 pp. | MR

[5] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992, 889 pp. | MR

[6] Wenbin Guo, The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers, Beijing–New York–Dordrecht–Boston–London, 2000, 325 pp. | MR

[7] O. Kegel, “Sylow-Gruppen and Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl

[8] W. E. Deskins, “On quasinormal subgroups of finite groups”, Math. Z., 82 (1963), 125–132 | DOI | MR | Zbl

[9] P. Schmid, “Subgroups Permutable with All Sylow Subgroups”, J. Algebra, 82 (1998), 285–293 | DOI | MR

[10] A. N. Skiba, “On weakly $s$-permutable subgroups of finite groups”, J. Algebra, 315 (2007), 192–209 | DOI | MR | Zbl

[11] A. Ballester-Bolinches, M. C. Pedraza-Aguilera, “Sufficient conditions for supersolvability of finite groups”, J. Pure Appl. Algebra, 127 (1998), 113–118 | DOI | MR | Zbl

[12] B. Huppert, N. Blackburn, Endliche Gruppen, v. III, Springer-Verlag, Berlin–New York, 1982, 745 pp.

[13] A. N. Skiba, “A characterization of the hypercyclically embedded subgroups of finite groups”, Journal of Pure and Apllied Algebra, 215:3 (2011), 257–261 | DOI | MR | Zbl

[14] R. Laue, “Dualization for saturation for locally defined formations”, J. Algebra, 52 (1978), 347–353 | DOI | MR | Zbl

[15] M. Weinstein, N. J. Passaic, Between Nilpotent and Solvable, Polygonal Publishing House, 1982, 367 pp. | MR | Zbl

[16] Ya. Bercovich, L. Kazarin, “Indices of elements and normal structure of finite groups”, J. Algebra, 283:1 (2005), 564–583 | DOI | MR

[17] H. Wielandt, Subnormal subgroups and permutation groups, Lectures given at the Ohio State University (Columbus, Ohio), Columbus, 1971, 275 pp.

[18] A. N. Skiba, L. A. Shemetkov, “Multiply $mathfrak{L}$-Composition Formations of Finite Groups”, Ukrainsk. Math. Zh., 52:6 (2000), 783–797 | MR | Zbl

[19] D. Gorenstein, Finite Groups, Harper Row Publishers, New York–Evanston–London, 1968, 463 pp. | MR | Zbl

[20] Y. Wang, “$c$-normality of groups and its properties”, J. Algebra, 180 (1996), 954–965 | DOI | MR | Zbl

[21] H. Wei, Y. Wang, “On $c^*$-normality and its properties”, J. Group Theory, 10 (2007), 211–223 | DOI | MR

[22] A. Ballester-Bolinches, M. C. Pedraza-Aguilera, “On minimal subgroups of finite groups”, Acta Math. Hungar., 7 (1996), 335–342 | DOI | MR

[23] M. Asaad, P. Csörgő, “Influence of minimal subgroups on the structure of finite group”, Arch. Math. (Basel), 72 (1999), 401–404 | DOI | MR | Zbl

[24] A. Ballester-Bolinches, Y. Wang, “Finite groups with some $C$-normal minimal subgroups”, J. Pure Appl. Algebra, 153 (2000), 121–127 | DOI | MR | Zbl

[25] Y. Li, Y. Wang, “The influence of minimal subgroups on the structure of a finite group”, Proc. Amer. Math. Soc., 131 (2002), 337–341 | MR

[26] H. Wei, Y. Wang, Y. Li, “On $c$-normal maximal and minimal subgroups of Sylow subgroups of finite groups, II”, Comm. Algebra, 31 (2003), 4807–4816 | DOI | MR | Zbl

[27] Y. Li, Y. Wang, “On $\pi$-quasinormally embedded subgroups of finite groups”, J. Algebra, 281:8 (2004), 109–123 | MR | Zbl

[28] M. Asaad, “On maximal subgroups of finite group”, Comm. Algebra, 26 (1998), 3647–3652 | DOI | MR | Zbl

[29] H. Wei, “On $c$-normal maximal and minimal subgroups of Sylow subgroups of finite groups”, Comm. Algebra, 29 (2001), 2193–2200 | DOI | MR | Zbl

[30] Y. Li, Y. Wang, “The influence of $\pi$-quasinormality of some subgroups of a finite group”, Arch. Math. (Basel), 81 (2003), 245–252 | DOI | MR | Zbl

[31] M. Asaad, A. A. Heliel, “On $S$-quasinormally embedded subgroups of finite groups”, J. Pure and Applied Algebra, 165 (2001), 129–135 | DOI | MR | Zbl

[32] Y. Li, Sh. Qiao, Y. Wang, “On Weakly $s$-permutably Embedded Subgroups of Finite Groups”, Comm. Algebra, 37 (2009), 1086–1097 | DOI | MR | Zbl

[33] R. Griess, P. Schmid, “The Frattini module”, Arch. Math., 30 (1978), 256–266 | DOI | MR | Zbl

[34] S. Li, Y. Li, “On $S$-quasinormal and $c$-normal subgroup of a finite group”, Czech. Math. J., 58:4 (2008), 1083–1095 | DOI | MR | Zbl

[35] Y. Li, Y. Wang, H. Wei, “On $p$-nilpotency of finite groups with some subgroups $S$-quasinormally embedded”, Acta Math. Hungar., 108:4 (2005), 283–298 | DOI | MR | Zbl

[36] M. Radaman, M. A. Mohamed, A. A. Heliel, “On $c$-normaliti of certain subgroups of prime power order of finite groups”, Arch. Math., 85 (2005), 203–210 | DOI | MR

[37] Y. Li, S. Qiao, Y. Wang, “A note on a result of Skiba”, Siberian Math. Journal, 50:3 (2009), 467–473 | DOI | MR | Zbl

[38] W. Guo, A. N. Skiba, “On some classes of finite quasi-$\mathfrak{F}$-groups”, J. Group Theory, 12 (2009), 407–417 | DOI | MR | Zbl