Some assertions equivalent to Riemann hypothesis
Problemy fiziki, matematiki i tehniki, no. 4 (2010), pp. 29-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some assertions in harmonic analysis on the infinite dimensional torus are stated and their equivalence to Riemann hypothesis is proved.
Keywords: Riemann hypothesis, infinite dimensional torus, M$\ddot{o}$bius function, Eiler function
Mots-clés : inverse formula.
@article{PFMT_2010_4_a4,
     author = {A. R. Mirotin},
     title = {Some assertions equivalent to {Riemann} hypothesis},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {29--34},
     publisher = {mathdoc},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2010_4_a4/}
}
TY  - JOUR
AU  - A. R. Mirotin
TI  - Some assertions equivalent to Riemann hypothesis
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2010
SP  - 29
EP  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2010_4_a4/
LA  - ru
ID  - PFMT_2010_4_a4
ER  - 
%0 Journal Article
%A A. R. Mirotin
%T Some assertions equivalent to Riemann hypothesis
%J Problemy fiziki, matematiki i tehniki
%D 2010
%P 29-34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2010_4_a4/
%G ru
%F PFMT_2010_4_a4
A. R. Mirotin. Some assertions equivalent to Riemann hypothesis. Problemy fiziki, matematiki i tehniki, no. 4 (2010), pp. 29-34. http://geodesic.mathdoc.fr/item/PFMT_2010_4_a4/

[1] B. Riemann, “Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse”, Monat. der Königl., Preuss. Akad. der Wissen., Berlin, 1859 (1860), 671–680

[2] J. B. Corney, “The Riemann Hypothesis”, Notices of the AMS, 50:3 (2004), 341–353 | MR

[3] E. Bombieri, “The Riemann Hypothesis”, The Millennium Prize Problems, AMS, Providence, RI, 2006, 107–129 | MR

[4] The Riemann Hypothesis, (Data of access: 15.09.10) http://www.aimath.org/WWN/rh/

[5] E. S. Titchmarsh, The Theory of the Riemann Zeta Function, 2nd ed., ed. R. D. Heath-Brown, Oxford University Press, Oxford, 1986 | MR | Zbl

[6] A. Ivič, The Riemann Zeta-Function — The Theory of the Riemann Zeta-Function with Applications, John Wiley, New York, 1985 | MR | Zbl

[7] A. R. Mirotin, Garmonicheskii analiz na abelevykh polugruppakh, GGU im. F. Skoriny, Gomel, 2008, 207 pp.

[8] W. Rudin, Fourier Analysis on Groups, Interscience Publishers, New York, 1962, 285 pp. | MR | Zbl

[9] L. Lyumis, Vvedenie v abstraktnyi garmonicheskii analiz, IL, M., 1956, 251 pp.

[10] A. G. Postnikov, Vvedenie v analiticheskuyu teoriyu chisel, Nauka, M., 1971, 416 pp. | MR