Mots-clés : calculus
@article{PFMT_2010_4_a3,
author = {A. V. Gavriliouk and A. A. Gavriluk},
title = {The problem of definition of derivative without invoking the concept of limit},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {24--28},
year = {2010},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2010_4_a3/}
}
A. V. Gavriliouk; A. A. Gavriluk. The problem of definition of derivative without invoking the concept of limit. Problemy fiziki, matematiki i tehniki, no. 4 (2010), pp. 24-28. http://geodesic.mathdoc.fr/item/PFMT_2010_4_a3/
[1] Stephen Kuhn, “The Derivative a la Caratheodory”, The American Mathematical Monthly, 98:1 (1991), 40–44 | DOI | MR | Zbl
[2] Ernesto Acosta G., Cesar Delgado G., “Frechet vs. Caratheodory”, The American Mathematical Monthly, 101:4 (1994), 332–338 | DOI | MR | Zbl
[3] S. I. Kalinin, “Ob izlozhenii osnov differentsialnogo ischisleniya veschestvennoznachnykh funktsii odnogo i neskolkikh peremennykh v terminakh ponyatiya differentsiruemosti funktsii po Karateodori”, Matematicheskoe obrazovanie, 2006, no. 2 (37), 18–31
[4] A. V. Gavrilyuk, A. A. Gavrilyuk, “Naglyadnye opredeleniya nepreryvnosti i differentsiruemosti”, Kh Belorusskaya matematicheskaya konferentsiya, Tez. dokl. mezhdunar. nauch. konf. (Minsk, 3–7 noyabrya 2008 g.), v. 1, In-t matematiki NAN Belarusi, Minsk, 2008, 124–125