On $\mathfrak F_h$-normal subgroups of finite groups
Problemy fiziki, matematiki i tehniki, no. 3 (2010), pp. 63-68

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and $\mathfrak F$ a formation of finite groups. We say that a subgroup $H$ of $G$ is $\mathfrak F_h$-normal in $G$ if there exists a normal subgroup $T$ of $G$ such that $HT$ is a normal Hall subgroup of $G$ and $(H \cap T)H_G/H_G$ is contained in the $\mathfrak F$-hypercenter $Z_\propto^\mathfrak F(G/H_G)$ of $G/H_G$. In this paper, we obtain some results about the $\mathfrak F_h$-normal subgroups and use them to study the structure of finite groups.
Keywords: finite groups, $\mathfrak F_h$-normal subgroup, Sylow subgroup, maximal subgroup, minimal subgroup.
@article{PFMT_2010_3_a9,
     author = {Yufeng Liu and Xiuxian Feng and Jianhong Huang},
     title = {On $\mathfrak F_h$-normal subgroups of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {63--68},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2010_3_a9/}
}
TY  - JOUR
AU  - Yufeng Liu
AU  - Xiuxian Feng
AU  - Jianhong Huang
TI  - On $\mathfrak F_h$-normal subgroups of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2010
SP  - 63
EP  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2010_3_a9/
LA  - en
ID  - PFMT_2010_3_a9
ER  - 
%0 Journal Article
%A Yufeng Liu
%A Xiuxian Feng
%A Jianhong Huang
%T On $\mathfrak F_h$-normal subgroups of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2010
%P 63-68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2010_3_a9/
%G en
%F PFMT_2010_3_a9
Yufeng Liu; Xiuxian Feng; Jianhong Huang. On $\mathfrak F_h$-normal subgroups of finite groups. Problemy fiziki, matematiki i tehniki, no. 3 (2010), pp. 63-68. http://geodesic.mathdoc.fr/item/PFMT_2010_3_a9/