On $\mathfrak F_h$-normal subgroups of finite groups
Problemy fiziki, matematiki i tehniki, no. 3 (2010), pp. 63-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and $\mathfrak F$ a formation of finite groups. We say that a subgroup $H$ of $G$ is $\mathfrak F_h$-normal in $G$ if there exists a normal subgroup $T$ of $G$ such that $HT$ is a normal Hall subgroup of $G$ and $(H \cap T)H_G/H_G$ is contained in the $\mathfrak F$-hypercenter $Z_\propto^\mathfrak F(G/H_G)$ of $G/H_G$. In this paper, we obtain some results about the $\mathfrak F_h$-normal subgroups and use them to study the structure of finite groups.
Keywords: finite groups, $\mathfrak F_h$-normal subgroup, Sylow subgroup, maximal subgroup, minimal subgroup.
@article{PFMT_2010_3_a9,
     author = {Yufeng Liu and Xiuxian Feng and Jianhong Huang},
     title = {On $\mathfrak F_h$-normal subgroups of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {63--68},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2010_3_a9/}
}
TY  - JOUR
AU  - Yufeng Liu
AU  - Xiuxian Feng
AU  - Jianhong Huang
TI  - On $\mathfrak F_h$-normal subgroups of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2010
SP  - 63
EP  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2010_3_a9/
LA  - en
ID  - PFMT_2010_3_a9
ER  - 
%0 Journal Article
%A Yufeng Liu
%A Xiuxian Feng
%A Jianhong Huang
%T On $\mathfrak F_h$-normal subgroups of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2010
%P 63-68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2010_3_a9/
%G en
%F PFMT_2010_3_a9
Yufeng Liu; Xiuxian Feng; Jianhong Huang. On $\mathfrak F_h$-normal subgroups of finite groups. Problemy fiziki, matematiki i tehniki, no. 3 (2010), pp. 63-68. http://geodesic.mathdoc.fr/item/PFMT_2010_3_a9/

[1] W. Guo, The Theory of Classes of Groups, Science Press, Beijing–New-York–Dordrecht–Boston; Kluwer Academic Publishers, 2000 | MR

[2] D. J. S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New-York, 1982 | MR

[3] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[4] J. Buckley, “Finite groups whose minimal subgroups are normal”, Math. Z., 116 (1970), 15–17 | DOI | MR | Zbl

[5] S. Srinivasan, “Two sufficient conditions for supersolvability of finite groups”, Israel J. Math., 3:35 (1980), 210–214 | DOI | MR

[6] Y. Wang, “$c$-normality of groups and its properties”, J. Algebra, 180 (1996), 954–965 | DOI | MR | Zbl

[7] N. Yang, W. Guo, “On $\mathfrak{F}_n$-supplemented subgroups of finite groups”, Asian-European Journal of Mathematics, 1:4 (2008), 619–629 | DOI | MR | Zbl

[8] Y. Wang, “$c$-normality and solvability of groups”, J. Pure Appl. Algebra, 110 (1996), 315–320 | DOI | MR | Zbl

[9] X. Guo, K. P. Shum, “On $c$-normal maximal and minimal subgroups of Sylow $p$-subgroups of finite groups”, Arch. Math., 80 (2003), 561–569 | DOI | MR | Zbl

[10] D. Li, X. Guo, “The influence of $c$-normality of subgroups on the structure of finite groups”, J. Pure Appl. Algebra, 150 (2000), 53–60 | DOI | MR | Zbl

[11] D. Li, X. Guo, “The influence of $c$-normality of subgroups on the structure of finite groups, II”, Comm. Algebra, 26 (1998), 1913–1922 | DOI | MR | Zbl

[12] L. Miao, W. Guo, K. P. Shum, “New criteria for $p$-nilpotency of finite groups”, Comm. Algebra, 35 (2007), 965–974 | DOI | MR | Zbl

[13] X. Feng, W. Guo, J. Huang, New characterizations of some classes of finite groups, Malaysian Mathematical Science Society (to appear)

[14] L. A. Shemetkov, A. N. Skiba, Formations of Algebraic Systems, Nauka, M., 1989 | MR

[15] W. Guo, “On $\mathfrak{F}$-supplemented subgroups of finite group”, Manuscripta Math., 127 (2008), 139–150 | DOI | MR | Zbl

[16] L. A. Shemetkov, Formations of Finite Groups, Nauka, Moscow, 1978 | MR | Zbl

[17] A. Ballester-Belinches, M. C. Pedraza-Aguilera, “On minimal subgroups of finite groups”, Acta Math., 73:4 (1966), 335–342 | MR

[18] L. Miao, W. Guo, “The influence of $c$-normality of some subgroups on the structure of a finite”, Problems in Algebra, 3:16 (2000), 101–106 | Zbl