Equivalent structural characteristic of the given generalized modulus of smoothness
Problemy fiziki, matematiki i tehniki, no. 3 (2010), pp. 49-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the equivalence of the $k$-th generalized modulus of smothness determined with the help of the generalized shift operator and Peetres $K$-functional is proved.
Keywords: Jacobi generalized shift operator, generalized modulus of smoothness, $K$-functional.
@article{PFMT_2010_3_a6,
     author = {G. N. Kazimirov},
     title = {Equivalent structural characteristic of the given generalized modulus of smoothness},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {49--51},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2010_3_a6/}
}
TY  - JOUR
AU  - G. N. Kazimirov
TI  - Equivalent structural characteristic of the given generalized modulus of smoothness
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2010
SP  - 49
EP  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2010_3_a6/
LA  - ru
ID  - PFMT_2010_3_a6
ER  - 
%0 Journal Article
%A G. N. Kazimirov
%T Equivalent structural characteristic of the given generalized modulus of smoothness
%J Problemy fiziki, matematiki i tehniki
%D 2010
%P 49-51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2010_3_a6/
%G ru
%F PFMT_2010_3_a6
G. N. Kazimirov. Equivalent structural characteristic of the given generalized modulus of smoothness. Problemy fiziki, matematiki i tehniki, no. 3 (2010), pp. 49-51. http://geodesic.mathdoc.fr/item/PFMT_2010_3_a6/

[1] G. N. Kazimirov, “Ob odnom podkhode k uproscheniyu modeli slozhnogo protsessa na osnove algebraicheskikh mnogochlenov”, Izvestiya Gomelskogo gosudarstvennogo universiteta imeni F. Skoriny, 2002, no. 6 (15), 171–174

[2] M. K. Potapov, “O strukturnykh kharakteristikakh klassov funktsii s dannym poryadkom nailuchshego priblizheniya”, Trudy MIAN SSSR, 134, 1975, 260–277 | MR | Zbl

[3] G. N. Kazimirov, Priblizhenie algebraicheskimi mnogochlenami funktsii s dannym $k$-m obobschennym modulem gladkosti, Dis. ... kand. fiz.-mat. nauk: 01.01.01, M., 1995, 106 pp.