The influence of $s$-$c$-permutably embedded subgroups on the structure of finite groups
Problemy fiziki, matematiki i tehniki, no. 2 (2010), pp. 54-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of a group $G$ is said to be $s$-$c$-permutably embedded in $G$ if every Sylow subgroup of $H$ is a Sylow subgroup of some $s$-conditionally permutable subgroup of $G$. In this paper, some new characterizations for a finite group to be $p$-supersoluble or $p$-nilpotent are obtained under the assumption that some of its maximal subgroups or 2-maximal subgroups of Sylow subgroups are $s$-$c$-permutably embedded. A series of known results are generalized.
Keywords: finite group, $s$-$c$-permutably embedded subgroups, 2-maximal subgroups, Sylow subgroup, $p$-supersoluble group, $p$-nilpotent group.
@article{PFMT_2010_2_a7,
     author = {Fan Cheng and Jianhong Huang and Wenjuan Niu and Lifang Ma},
     title = {The influence of $s$-$c$-permutably embedded subgroups on the structure of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {54--61},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2010_2_a7/}
}
TY  - JOUR
AU  - Fan Cheng
AU  - Jianhong Huang
AU  - Wenjuan Niu
AU  - Lifang Ma
TI  - The influence of $s$-$c$-permutably embedded subgroups on the structure of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2010
SP  - 54
EP  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2010_2_a7/
LA  - en
ID  - PFMT_2010_2_a7
ER  - 
%0 Journal Article
%A Fan Cheng
%A Jianhong Huang
%A Wenjuan Niu
%A Lifang Ma
%T The influence of $s$-$c$-permutably embedded subgroups on the structure of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2010
%P 54-61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2010_2_a7/
%G en
%F PFMT_2010_2_a7
Fan Cheng; Jianhong Huang; Wenjuan Niu; Lifang Ma. The influence of $s$-$c$-permutably embedded subgroups on the structure of finite groups. Problemy fiziki, matematiki i tehniki, no. 2 (2010), pp. 54-61. http://geodesic.mathdoc.fr/item/PFMT_2010_2_a7/

[1] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[2] W. Guo, The theory of class of groups, Science Press, Beijing–New-York–Dordrecht–Boston; Kluwer Academic Publishers, 2000 | MR

[3] O. Ore, “Contributions to the theory of groups of finite order”, Duke Math. J., 5:2 (1939), 431–460 | DOI | MR

[4] N. Itô, J. Szép, “Uber die Quasinormalteiler endlicher Gruppen”, Act. Sci. Math., 23 (1962), 168–170 | MR | Zbl

[5] W. Guo, K. P. Shum, A. N. Skiba, “Conditionally permutable subgroups and supersolubility of finite groups”, Southeast Asian Bull. Math., 29:2 (2005), 493–510 | MR | Zbl

[6] W. Guo, K. P. Shum, A. N. Skiba, “$X$-quasinormal subgroups”, Siberian Math. J., 48:1 (2004), 433–442 | DOI | MR | Zbl

[7] W. Guo, K. P. Shum, A. N. Skiba, “Criterions of supersolubility for products of supersoluble groups”, Publ. Math. Debrecen, 68:3–4 (2006), 433–449 | MR | Zbl

[8] W. Guo, K. P. Shum, A. N. Skiba, “$X$-semipermutable subgroups of finite groups”, J. Algebra, 315 (2007), 31–-41 | DOI | MR | Zbl

[9] J. Huang, W. Guo, “$S$-condiyionally permutable subgroups of finite groups”, Chin. Ann. Math. Ser. A, 28:1 (2007), 17-–26 (in chinese) | MR | Zbl

[10] S. Chen, W. Guo, “$S$-$C$-permutably embedded Subgroups of finite groups”, Int. J. Contemp. Math. Science, 3:20 (2008), 951–-960 | MR | Zbl

[11] Li S. et al., “The influence of $SS$-quasinormality of some subgroups on the structure of finite groups”, J. Algebra, 319 (2008), 4275–-4287 | DOI | MR | Zbl

[12] W. Guo, “On $F$-supplemented subgroups of finite groups”, Manuscripta Math., 127 (2008), 139–150 | DOI | MR | Zbl

[13] B. Huppert, Endliche gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[14] L. A. Shemetkov, Formations of finite groups, Nauka, M., 1978 | MR | Zbl

[15] M. Asaad, “On the supersolvability of finite groups”, Annale Univ. Sci. Budapest, XIII:26 (1975), 3–7 | MR

[16] Y. Wang, “Finite groups with some subgroups of Sylow subgroups $c$-supplemented”, J. Algebra, 224 (2000), 464–478 | DOI | MR

[17] Q. Zhang, “On $S$-semipermutablility and abnormality in finite groups”, Comm. Algebra, 27 (1999), 4515–4524 | DOI | MR | Zbl

[18] M. Xu, An introduction to finite groups, Science Press, Beijing, 1999 (in chinese)