Optimal control problem of a thermal process in the rod under uncertainties
Problemy fiziki, matematiki i tehniki, no. 2 (2010), pp. 34-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

An optimal control problem of a thermal process in the rod under uncertainties is considered. The proposed solution method is the reduction to linear system optimal observation problems and optimal control of the determinate system on the obtained evaluations. Operating algorithm of the optimal allocation regulator that forms optimal feedback in real time current values is described.
Keywords: thermal process, optimal feedback on allocation, optimal control problem, principle of divisibility.
@article{PFMT_2010_2_a4,
     author = {R. Gabasov and D. S. Kuzmenkov},
     title = {Optimal control problem of a thermal process in the rod under uncertainties},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {34--39},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2010_2_a4/}
}
TY  - JOUR
AU  - R. Gabasov
AU  - D. S. Kuzmenkov
TI  - Optimal control problem of a thermal process in the rod under uncertainties
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2010
SP  - 34
EP  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2010_2_a4/
LA  - ru
ID  - PFMT_2010_2_a4
ER  - 
%0 Journal Article
%A R. Gabasov
%A D. S. Kuzmenkov
%T Optimal control problem of a thermal process in the rod under uncertainties
%J Problemy fiziki, matematiki i tehniki
%D 2010
%P 34-39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2010_2_a4/
%G ru
%F PFMT_2010_2_a4
R. Gabasov; D. S. Kuzmenkov. Optimal control problem of a thermal process in the rod under uncertainties. Problemy fiziki, matematiki i tehniki, no. 2 (2010), pp. 34-39. http://geodesic.mathdoc.fr/item/PFMT_2010_2_a4/

[1] V. I. Krylov, V. V. Bobkov, P. I. Monastyrnyi, Nachala teorii vychislitelnykh metodov. Uravneniya v chastnykh proizvodnykh, Nauka i tekhnika, Mn., 1986, 311 pp. | MR

[2] R. Gabasov, F. M. Kirillova, “Printsipy optimalnogo upravleniya”, Dokl. NAN Belarusi, 48:1 (2004), 15–18 | MR | Zbl

[3] R. Gabasov, F. M. Kirillova, D. S. Kuzmenkov, “Optimalnoe upravlenie teplovym protsessom”, Dokl. NAN Belarusi, 53:1 (2009), 5–9 | MR

[4] D. S. Kuzmenkov, “Optimalnoe nablyudenie za sistemoi parabolicheskogo tipa”, Izv. NAN Belarusi. Ser. fiz.-mat. nauk, 2010, no. 1, 63–70 | MR

[5] R. Gabasov, F. M. Kirillova, “Optimal online control with delays”, Mem. Differ. Equations Math. Phys., 31 (2004), 35–52 | MR | Zbl

[6] P. V. Makevich, Optimalnoe nablyudenie dinamicheskikh sistem s zapazdyvaniem, Dis. ... kand. fiz.-mat. nauk: 01.01.09, In-t matematiki NAN Belarusi, Minsk, 2009, 105 pp.